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1. Introduction

This report is concerned with the upward continuation of gravity anomaly
data given on the surface of the earth. A number of computational procedures "
to be presented here are offshoots from the studies of Cruz (1985) dealing with 0
modeling the external gravity disturbance vector field.

Various modern possibilities exist to model the external gravity field of the
earth for the realistic case of free-air anomalies being given on the surface of
the earth's visible topography. These possibilities fall under two general types
of modeling approaches: the continuous approach, and the discrete approach.
In the continuous approach the free-air anomalies are assumed to be known at
every point of the earth's surface, and the Molodensky problem is being
solved. In the discrete approach the anomalies are known only at discrete
points of the earth's surface, and the Bjerhammar problem is then being
solved. In this report we have used the discrete approach, specifically least-
squares collocation, only in the first stage of data processing, for the purpose
of generating an optimal set of mean surface free-air anomalies from the
originally given irregular and discrete distribution of point anomaly data.
After this, using the optimal set of surface data and concepts from the con-
tinuous approach we generated our quantity of interest which is the upward . .
continued anomaly.

.O

The simplest conceptualization of a solution to the (continuous)
Molodensky's problem is by means of analytic continuation advocated in Moritz
(1969). The external gravity anomaly field is analytically continued to a level
surface which may be entirely above, partly above and partly below, or
entirely below the earth's surface. Once the level surface anomalies are -:,

known, then under a spherical approximation the external gravity field can be 0
generated from these anomalies using classical proc,,dures for data on a
sphere. A general procedure for analytical continuation is by means of Taylor
series:

Agp* A gs +  da (H - Hs) + dA if P- Hs) 2  +(1 )'-i"
aH p2aH 2 '

where al -H':-a2P(11

Ags  surface free-air anomaly, defined more precisely in section 3

11gp* anomaly in the same plumb line as Ags, but located on the

level surface, to which the surface data are being reduced

Hs  elevation of the surface point to which Ags applies

HP elevation of the level surface of Agp*

al vertical gradient of the gravity anomaly field

If the level surface to which the data are reduced is entirely below the earth',.;
surface the analytical (downward) continuation may also be done by ;ir.
inversion, usually by successive approximations, of the classical Poisson

::::::. .
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integral (see equation (2.1.13))

t2( "1g 5  da , il1 . 2

in accordanc(e with the procedures of l1jerhammar (1!43).

''ho use of (1.1) presents practical difficulties because the comrputation of
the required vertical gradients of the gravity anomaly field, even just the first.
g1ratdient and the more so the higher order gradients, poses rather severe
requirements on the density and accuracy of gravity data (for, a study of
numerical evaluation of the gradients, see Noe, 1980). Therefore, the tech-
niiques that we have used in this report have a common motivation, namely to
avoid altogether the use of correction terms in (1.1) and therefore use only' the
first term. The different manners in which the correction terms are avoided
give rise to three methods for upward continuation which we numerically tested
and compared using real gravity and elevation data. The first method, and the
crudest, is to simply drop the correction terms and take Ag4p* to be equal to

e therefore simply insert Ags directly into the classical Poisson upward
continuation integral for data on a sphere. This procedure will obviously be in

frror especially in areas with rough anomaly field and our numerical study will
provide a feeling for the magnitude of this error. The second method is to
drop all correction terms, only after the terrain correction has been applied to
Ag. The application of the terrain correction is viewed as a first order
attempt to reduce the surface data Ags to a level surface; the reduced data are
then inserted into the Poisson upward continuation integral. The third method
is to drop the correction terms, only after smoothing the anomaly field by the
subtraction of the gravitational effects of certain shallow topographic masses of
assumed density. The total upward continued anomaly field is then the sum of
two fields: one generated by classical Poisson integration from the residual
anomalies left after the removal of topographic masses, and the other is the
field generated by integration of the gravitational effects of the rem o("vod
topographic masses themselves. This third method is in the spirit of the

i nd
F rsber (see Tscherning, 1979; Tscherning and Forsberg, 1983; and Forsberg,

Other concerns of this report include the use of sphcri-al harmonics in
an ,)mrnaly field modeling, thef use of Fourier series for' upward continuation, and
the :iarplir' :tiorn of studied modeling techniques to t he hal loon.- borne , Lgr:vity
project bein,: coordinated by the Air Force Geophysics latboratory (iLazare.wic-v,
ct al., 1983).

24
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2. Upward Continuation Formulas

2.1 Spherical-Earth Poisson Integral

Let us use the spherical coordinates r (geocentric radius), T (geocentric
latitude), and X (geocentric longitude). The anomalous potential T(r, T, )
being a harmonic function in space has surface spherical harmonics T['(R, T, X)
attenuating with r-(n+1) (Heiskanen and Moritz, 1967, p. 35):

The surface harmonics of the gravity anomaly Ag(r, ,X)and anomialous
potential T(r, T, X) are fundamentally related, in a spherical approximation, as
follows (ibid., pp. 88-89):

n-I
Agn(r, I, ~ rTn(r, T, X) (2. 12

The last equation becomes for r=R:

n-i
Aign(R, T, X) =--p- Tn(R, T, X) (2.1-3)

Substituting (2.1.1) into (2.1.2):

P- R nR Tt (2.1.4)

Substituting (2.1.3) into (2.1.4):

Agn(r, r) 11nR Tn4 X) (2.1.5'

that is, the surface harmonics of Ag attenuate as r-(n+ 2 ). The upward
continued anomaly Ag(r, T, X) is found by summing the termns in (2.1.5). After
omitting the zero and first degree harmonics as customary:

P1 ( gn() T, X) (2.1.6)~

3
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The space domain equivalent of (2.1.6) is:

1g(r, W, X) f f K(t, P0) Ag(R, W X') da (2.1.7)

a

where

t )

K(t, !) =  (2n+l) tn + 2  Pn(cOs )(..8

n=2

cos t = sin ¥ sin ' + cos T cos ' cos (X' - ?) (2.1.9)

A closed form for K(t, Y,) can be obtained using the following relation (ibid., p.
35):

D1 - ZI(2n+l) tn+1 Pn(cos 1) (2.1.10)

n-O

where D (1 + t2 - 2t cos #) I (2.1.11)

Multiplying (2.1.10) by t, removing the zero and first degree harmonics, and
combining with (2.1.8) we get the closed form:

K(t, *) = 1i -- t 2 
- 3t' cos 10 (2.l.12)

Equation (2.1.7) with (2.1.12) is the same as equation (2.160) in ibid., p. 90,
and is in fact the well-known Poisson integral formula for the space domain
upward continuation of gravity anomalies given on the surface of a geocentric
sphere. Note that the second and third terms of the integral kernel K(t, k') are
related to the removal of the zero and first degree harmonics from the gravity
anomaly field. For our (low altitude) applications, however, these terms have
negligible effects and so it is sufficient to retain only the first term of the
integral kernel, giving:

Ag(r, 47, ff,~ oD da (2.1.13) :'-

a

4



3.2 RationaleBehind an Indirect Method of Upward Continuation of Surface

Anoma ies

We are given free-air anomalies Ags on the earth's surface,and we want to
upward continue them. The difficulty with the use of Poisson integral to solve
this problem is that the Poisson geometry requires that the data to be upward
continued refer to points on the surface of a sphere. Conceptually, what could --

be done would be to first analytically continue the surface anomalies Ag, to
level surface anomalies 4g . A simple conceptualization of this continuation is
by Taylor series, wherein certain corrections that depend on the vertical
gradients of the field are added to Ags to arrive at Ag,* (see equation (1.1) of
the Irtroduction):

dAg [S_g K l~ + . H (llp - Hs) 2  
. (3J.2.l)Ag KP gs o H tp - H}S ) + 2 (if ..

It is to b e expected that the rougher the anomaly field (from which Ag, and
. , ;,t'Vs) th,. l tc' will ' the dit'eferrice betwei: Ai s  .; d,

b#cause high degree frequencies are affected much by downward/upward
continuation (see, for example, Rummel, 1975, pp. 42-43) while low frequencies
,ire, not as critically affected.

There is a theoretical problem in the case of downward continuation of Ags
('14 lies below Ags), namely, that very high irregularities in the field caused
by very high irregularities in the topography may cause the solution to
diverge, or, at least, be very unstable in the sense that small errors in Ags
will amplify tremendously to errors in Ag. Another, now practical, problem is.

that the computation of the vertical gradients of the field, even just the first.
gradient and the more so the higher the gradients, places rather severe
requirements on the density and accuracy of the given Ags .

The above problems reduce for the case of a smooth anomaly field. The
corrections (A g -Ags will be small, the downward continuation stable, and
simpler, omputati nal pr -edures for the corrections may be devised. It is -

then the entril strategy of what we would call the indirect method of upward
continuation to explain away most of the high frequencies present in Ags ;is
being the ,'ff ct Ag - (see s, .tion 2.5) of certain shallow topographic masses, in

ii Ir to he "eft, oTn with :' relatively low frequency residual field (Ag -A

which can then be- upward cont.inued less problematically by the Poisson
integral. Th, missing iipward continuation of Agt to space points is then
carried otut essentially by an equivalent source technique., which says that the
field for which Ag, are boundary values has the to p(gLraphic inassi s as
"soiirces" and, therefore, the said field can be generated by direct integration
of gravitational influences of the masses (see section 2.5). In the next se(-tion
we will detail the equations that can be used to implement an indirect method
of upward continuation of surface anomalies A gs .

It. is to be, nt;.,., thait the Poisson integrat.ion, with its associated probit.t
if ritir;:if iatta tt, be located on a level surface, carl be altoget tr ;twniid



have found that under the approximation (3.1.4) the Ig as operationally
computed from (3.1.1) is a free-air anomaly on 'he earth's surface. U/sirg a
subscript "s" to denote a surface free-air anomaly we final],:,- h vt, the
interpretation:

Ag Ags(h, *, X) (3.1.6)

The error of the interpretation (3.1.6) is given by the last term of (3.1.2)

arising from the difference between t.- normal height H* of P and the ortho
metric height H of P:

Ag h , ~ -- (H* - H) (:.I .7

\n estimate of this error can be obtained using the standard normal grad(ienrt

- 0.3086 mgalin (:. 1.8)

,ritin pproxilnat9 formula for (11* - 11) found in Heiskanen and Moritz (1967,

1t* I meters) AgF,BA(gals) H(km) ,  (3.1. .9.)

w.,'rc aP*A is the Rouguer anomaly given by

Ag Ag 2rkp,. (3.1. 10)

A standard value for 2rrkp, where k=Newtonian gravitational constant and

p:densit.v of topographic masses, is

2>kp- 0. 1119 mgal'mn, (3.1.11)

,o-)rresp)nding to k:66.7 x 10- cm3 /.g/sec 2 and p-2.67 g /cm3 . Using equations

(3.1.8) ., (3.1.11) into (3.1.7) and using gravity anomaly and elevation data in
our test. area in New Mexico we found that the error s has a maximal value of
0.2 nicd, n'"rr!mi, over mountainous terrain of the aren.

1772.



ah j vertical gradient of the normal gravity at P

-yp'(O. , normal gravity on the ellipsoid, at the point P' that has
the same (* )as P.

At this point, assume that we do not know the vertical location of the point at
which the Ag found by (3.1.1) applies, and let us find this location. Let H* be
the normal height of P as defined in equation (3.1); we can then perform the
following manipulations on (3.1.1):

ftg gp(h, +, A)-[1]o.0 A

gp(h, *,A yp'(O, *, ) + ()H+ pH* (~Fl*]

g~(, , A -[r~(o 0,A)~ [ I[*] + () (H1*.H) '3.1.2)

YQCI*, , X) p'(, *, X + 1Z (3. 3

(she quatioy n (.7brcelow fos ahenoesmate ofavthe upactualndifne, ll-ol1
Subistitutint (P..3 ito (3.1.2)rand neilectinf thesmflled hirdeturmibnc(u.1) o

g, (hO,X zh H* !3. 1 .51))

(she eiuhtidof (3.1.) bes, acording toti(3.e), the raityuano y tiffepeint

P, which ii- the present case is a station on the earth's surface. Therefore we

16



3. Upward Continuation of Surface Free-Air Anomalies

In this section we will describe a procedure that can be used for the
upward continuation of free-air anomalies given on the surface of the earth.
These surface free-air anomalies are boundary values of free-air anomalies in
space. Recall from Heiskanen and Moritz (1967, pp. 91, 292) that the gravity
anomaly on or above the surface of the earth is defined as follows:

Agp(h, *, X) 2 gp(h, *, X) -7Q(H*, , ) (3.1)

where (see diagram on p. 13)

Agp gravity anomaly at P

h height of P above the reference ellipsoid

*, X geodetic latitude and longitude ,i P in,!i

Q normal point of P; point Q is established such that the actual
gravity potential Wp at P is equal to the normal gravity
potential UQ at Q, and P and Q lie on the same plumb line ot"

the normal gravity field.

H* height of the normal point Q above the reference ellipsoid;
H* is called the normal height of P.

gp gravity at P

-Q 0normal gravity at Q.

Below we first show that operationally available anomalies can be closely
interpreted as surface free-air anomalies, and then we describe a strategy for
upward continuation of these anomalies combining Poisson integration, sphcrical
harmonics, and topographic mass effects.

3.1 Available Anomalies as Surface Values

In practice, available gravity anomalies had been computed from:

Ag gp(h, *, A) - H p(O, 0, (3. 

where

h, *, A ellipsoidal height, geodetic latitude, and geodetic
longitude of a gravity station P

gp(h, , A) measured gravity at P

t orthometric height of P

15
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Input: (,. H*) plus parameters of the normal ellipsoid.

Compute:

X =(N + H*) cos * cos X(2.6.2)

Y =(N + H*) cos *sin X (2.6.3)

Z =(N(1-e') + H*) sinf# (2.6.4)

with N = a/(1-el sin 2  ) (2.6.5)

p 2 = X2 + y 2  (2.6.6)

r 2 = p 2 + Z2  (2.6.7)

c ae (2.6.8)

K2  r2 + c 2  
(2.6.9)

h2  KV - 4p2c2)% (2.6.10)

sin 2a K2-h2  (..1

tan z
n P Cos.~12

q X ,[ 3 cot a (1-a cot a)] (2.6.13)

q9 7 (-cta (2.6.14)
sin 2 Q,

w =(1 - sin2 a COS2#)'% (2.6.15)

KM sin 2a +w 2a2g' sin2a 1S.2
ra -cw + 2cqow (snP 3)(.16

p w 2a2g sin a-sin P9 cos 6 (2.6.17)cqow

w2c COS2Pr. w tan (2.6.18)

yp -p+ W2c sin Cos P (2.6.19)

7T . + 7P)' (2.6.20)

where 7T is the normal gravity in the vertical direction.

14



geop W Wp =onst.

Sspherop U IV =cofst.

ellipsoid ' I vo

Diagram for Section 2.6

The relation between the geometric height h, normal height H* and the height
anomaly ¢, for a given computation point P in space.

For the computation of normal gravity -TT we require the normal height H*.
Based on (Heiskanen and Moritz, 1967, eq. (8-5)) H* can be derived from h and
height anomaly t according to the formula:

H = h - (2.6.1)

For our balloon project we converted the known geometric heights into the
normal heights using the height anomalies estimated from the spherical
harmonic expansion of gravity field up to degree 180 (Rapp, 1981).

Here we will give a summary of the procedure as presented in (Rapp,
January 1966, pp. 14-16):

13



anomalies at the point Q. This means that we are viewing AgQt and AgQBA as
components of excesses or deficiencies of the actual gravity at the point Q
over the normal gravity at the "corresponding" normal point Q' (the
correspondence between Q and Q' is that the actual potential at Q is equal to
the normal potential at Q', and Q and Q' lie on the same plumb line of the
normal field - see Heiskanen and Moritz, 1967, p. 83). In this sense we may
also call AgQt and AgQBA as gravity anomalies generated by the topographic
masses and Bouguer plate, respectively.

2.6 Normal Gravity in Space

The spatial relationship between the actual gravity field and the normal
gravity field generated by a given ellipsoid of reference is given on the
diagram on the next page. The geop passing through point P has the same
constant potential as the apherop passing through the point Q, where the geop
and spherop are the equipotential surfaces of the actual and ellipsoidal gravity
field respectively.

Normal gravity corresponding to a given value of gravity anomaly at a
fixed location P in space is defined to be the vertical component of attraction
generated by the equipotential ellipsoid of revolution (rotating with the same
angular velocity w as the real earth) at the respective point Q located on the
equipotential surface of the ellipsoidal field corresponding to point P. The
spatial correspondence between P and Q is uniquely determined by the
requirement that the earth's gravity potential at P is equal to the normal
gravity potential of ellipsoid at the corresponding point Q. The normal gravity
in space is fully determined by the geometric (size and shape) and the
physical (surface potential and the rotation) properties of the level ellipsoid.
Combined with the gravity anomaly the normal gravity can be used to compute
the vertical attraction due to the actual Earth at any location. For the
purpose of this report we use the equations by (Hirvonen, 1960), as
implemented by (Rapp, Feb. 1966) in his FORTRAN subprogram 'SGAMMT'.

Although the method of Hirvonen was fully described by (Rapp, Jan. 1966)
and then fully documented for the computer implementation in (Rapp, Feb. 1966)
we decided to state here the equations used by the subprogram 'SGAMMT'. For
details the reader is referred to (Hirvonen, 1960) and (Rapp, Jan. 1966).

Suppose we need the vertical component of normal gravity YT cor-
responding to the computation point P having the coordinates *, X, h, where h
is the geometric height of P above the reference ellipsoid. Then, following
(Heiskanen and Moritz, 1967, eq. (8-5)) the normal gravity 7T should be
referred to some point Q which is the 'normal' counterpoint of P. Point Q can
be found by projecting point P from the geop having potential Wp on to the
corresponding spherop having normal potential U=Wp (see diagram below). The
distance between P and Q or the geop-spherop separation is called the height
anomaly <. The geometric height of 'normal' point Q above reference ellipsoid
is defined to be the normal height H* of the corresponding point P.

12
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0 ff -cQ p dvQ (2.5.3)

v IQr

The last equation gives the ("topographic") gravity anomaly in space generated
by topographic masses of assumed density.

For the generation of topographic gravity anomalies right on the surface of
the earth, a special treatment is sometimes convenient. Assuming that the
masses referred to are those lying between the actual topography and the
geoid we can perform the following split (see ibid., pp. 130-132):

AgQt agQBA -tcQ (2.5.4)

where

AgQt vertical attraction at the surface point Q generated by topo-
graphic masses lying between the actual topography and the
geoid.

AgQBA vertical attraction at Q generated by a Bouguer plate through Q.

tcQ the well-known gravimetric terrain correction at Q, to account
for the difference between the attraction AgQBA caused by the
Bouguer plate and the attraction AgQt caused by the actual
topographic masses.

In terms of formulas:

£gQBA =27wkpHQ (2.5.5)

tcQ % kpR2 J -f d (2.5.6)
f o 

3  d o 
-'

in which (Moritz, 1966, p. 88):
R mean earth radius

H elevation of integration point

HQ elevation of computation point

aunit sphere

do element of solid angle L

to 2R sin #/2

angular distance between 0 and do.

The use of the symbol "A" in (2.5.4) is intended to suggest that in this report
we are using the attractions AgQt and AgQBA as components of gravity

11 . ' -
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2.5 Direct Tqpoqraphic Mass Effect

Topographic heights are a much more readily available and cheap type of
information than gravity anomalies themselves, and can be effectively utilized
in gravity anomaly interpolation and upward continuation problems. The idea
is to subtract, from the originally given gravity anomaly boundary values on
the earth's surface, the gravity anomaly effects caused by topographic masses
of assumed density. The residual anomalies are then smoother and can be
much more easily interpolated and upward continued than the original
anomalies. The removed effects of the topographic masses are then added back
at the interpolation points or at the upward continuation points by direct
integration of the gravitational influence of the masses at those points.

Topographic masses of assumed constant density p (e.g., p=2.67 g/cm3 is a

standard density for land areas) directly generate gravitational attractions at
points on or above the earth's surface. Considering the topographic masses as
anomalous, we have the following "topographic" anomalous potential generated
at the point P in space (Heiskanen and Moritz, 1967, p. 3):

T t kp fff dv (2.5.1) .-

where

k Newtonian gravitational constant

p constant density of the topographic masses

dvQ element of volume

v volume occupied by the masses

IQ (rp2+rQ2 - 2rprQ cos pQ)%, i.e., the spatial distance between
P and Q

*pQ angular distance between P and Q

rp, rQ geocentric radius of P, Q.

We have the following fundamental relation between gravity anomaly Ag and
anomalous potential T in a spherical approximation (ibid., p. 88):

Ag T (2.5.2)
dr r

Substituting (2.5.1) into (2.5.2), exchanging the order of integration and
differentiation, and performing the differentiations, yield:

10
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z 1,
where a(x, y) T2 ( + y2 + z2)3/2 (2.4.3)

a(x, y) can be viewed as the impulse response function of the upward
continuation operation (2.4.2).

Now, the 2-dimensional Fourier transform of (2.4.3) is defined as p
(Robinson E.A., M.T. Silvia, 1981, p. 224):

A(kx, ky)= [ _ a(x, y) e2i(kxx+kyy) dxdy = ez2 / 4  Y (2.4.4)

for z > O, i =.f

(see equation 7, p. 11 and equation 44, p. 56, Erdelyi et al., 1954).

This is the frequency response or transfer function associated with P
upward continuation operator. The function A(kx, ky) is a spatial frequency
function of two continuous variables kx, ky representing the frequencies (in
cycles per unit length) along x and y directions.

The boundary values f(a, p) can be transformed to the frequency domain
by means of the Fourier integral:

F(kx, ky) = f(x, y) e21Ti(kxx+kyy) dxdy (2.4.5)

1_

Using this transform the equivalence of the Dirichlet integral (2.4.1) in the
frequency domain turns out to be the multiplication of the transfer function
(2.4.4) and the Fourier transform of the data measured at the boundary
surface:

Fz(kx, ky) A(kx, ky) • F(kx, ky) = eZ2r fk 'k x F(kx , ky) (2.4.6)

Finally, the desired upward-continued function is obtained by the inverse
Fourier transform of the frequency function Fz (Bhattacharyya, 1967):

I -~~~~2ni(kxx + kyy)dxdy24.)"-'"
fz(x, Y) 47 4-- Fz(kx, ky) e dkxdky (2.4.7)

a __
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2.4 Fourier Transform

In this section we briefly introduce the 3-dimensional Dirichlet problem for
the half-space and state its solution. This forms the theoretical basis on which
the Fourier transformation technique can be implemented in upward continu-
ation problems. Fourier technique offers high speeds in computation, requiring
no more assumptions than the planar Poisson's integral method does. Now we
will state the problem theoretically (refer to later sections for examples of
practical implementation).

The Dirichlet problem in three-dimensions consists of the Laplace equation

42f a 2 f a2f
OX 2  

ay
2  a OZ 2

within some region V with boundary surface S, together with data prescribed
on S.

We will use the usual planar approximation to the earth's surface, where
the boundary surface S is the plane z=0 and the volume of interest V is the
half-space z>O. The solution to this problem is known in the literature
(Robinson E.A., M.T. Silvia, 1981, p. 223) as the Dirichlet integral.

fz(x, y) f(x, y, z) = P) dadP >
2 Iz [(X-_) 2 + (y-fi)l + Z213/2

(2.4.1)

where f(cc, P) f(a, P, 0) are boundary values of f for z=0.

In this report the function f to be upward continued is gravity anomaly
function. The gravity anomaly is a harmonic function in case of the planar
Dirichlet problem as stated above. We use the fact that in our planar case
vertical gravity satisfies the Laplace equation if the potential does. The proof
can be found in (Robinson E.A., M.T. Silvia, 1981, p. 213).

The solution (2.4.1) is identical with the Poisson's integral for gravity
anomalies introduced in Section 2.3. Poisson's integral can be viewed as a
limiting case for the sphere of radius R when R4'. On the other hand the
Dirichlet solution (2.4.1) is derived for the planar case of half-space z>O using
the Green's second identity (Robinson E.A., M.T. Silvia, 1981, ch. 4). Notice
that (2.4.1) represents the 2-dimensional convolution integral.

Equation (2.4.1) can be written in the form:

fz(x, Y, = f J f(a, p) a(x-a, y-P) da df (2.4.2)

8



Equation (2.2.3) was motivated by the fact that for a point on the ellipsoid
(i.e., r rE, H0  0 0) (2.2.3) becomes:

nS

Ag(rE, * X) kM (n-)

n=2 m=0

(C* Cos mX + S sin mX) P (sin *). (2.2.4)

The last equation is essentially the equation inverted in Rapp, 1981, eq. (2) S
(except that Rapp used the geocentric latitude I instead of the geodetic
latitude *) to compute his coefficients C'm, Sm from terrestrial data
Ag(r E , *, X); realizing this we merely constructed (2.2.3) as an upward
continued version of (2.2.4) under a spherical approximation. The rationale
behind (2.2.3) does not hold at lower degrees (say, n < 36) of the Rapp-1981
field, these degrees being dominated by satellite derived coefficients n*m, him. 0

Nevertheless, we decided to use (2.2.3) entirely, for n:2 to 180'; in any case,
(2.2.3) serves our above stated purpose of generating a self-consistent, spatial
reference anomaly field from a set of spherical harmonic coefficients.

2.3 Flat-Earth Poisson Integral
For our applications of the Poisson integral (2.1.13a) it is sufficient to use

a planar approximation, namely (Rapp, 1966; Hirvonen and Moritz, 1963):

I
Ag~~~r, f, f) AgrF ') dx dy(2.1Ag9(r, P, X) 97T ~ r,*' X

A D

where
s

A fixed integration area

D, (x2 + y
2 + H2)%

x I? cos W' (X' - X)

y R(W' - *)

Equation (2.3.1) represents a flat-earth, space domain upward continuation
formula for gravity anomalies. This equation is indicated to be valid for a
distance tup to 20' from the computation point and tup to an upward continu-
ation distance of 250 km (Hirvonen and Moritz, 1963, p. 71).

7



[-7.

[M 

n

Tn(a, , (C* Cos mN + S sin mX) Pn(sin W) (2.2.1)
a nm m m

M=O

where

a u -ially an equatorial radius

kM geocentric gravitational constant

C* S fully normalized potential coefficients with even-degree
nm nm

zonal reference values subtracted

la -n_ a* MS spectrum of T(r, W, X) on the sphere of radius a
' " a nm a nin

P fully normalized Legendre functionsnm

The upward continued gravity anomalies from spherical harmonics are obtained
by substituting (2.2.1) into (2.1.4) with R=a, then summing the surface
harmonics:

"T-..~, ¥ X) =aM (n-) ( 2 (Cn Cos mx + nSin ir) P (sin W)
(n2r nm nm nin

n-2 m=O (2.2.2)

For the purposes of this report we would like to use spherical harmonics
to generate a rigorously self-consistent field of gravity anomalies on the
earth's surface and in space. This field is to be used as reference, to be
subtracted from the observed field as part of upward continuation procedures.
For this purpose (2.2.2) can be used, but during our applications and because
we used the Rapp (1981) field we decided to use the following equation
instead:

kMa n$2 n
: M(n -1 ) ( -' )n -gr, *, X) aj (-i -sH

n-2 m=O

(C* cos mX + S sin mnX) P (sin (), 2.2.3)
nm m nm

where, as in (2.1.13b), 110 is the height of the computation point (r, *, ) above
the referenc__e llipsoid.

6



Note that (2.1.13) needs gravity anomalies to be givert on the surface of a
(geocentric) sphere. In practice, we have gravity anomalies given on the
surface of a (geocentric) reference ellipsoid (the problem of the topography is
taken care of separately). To still use (2.1.13) in practice, we follow the
spherical approximation used in Heiskanen and Moritz (1967, p. 241):

Spherical Approximation

Ag(r, , 2(1-t 2 ) X) + X d (2.1.13a)

= R (21. 13b)
RH

* cos ' sin * sin *' + cos * cos *' cos(X'-X) (2.1.13c)

where

(r, , X) geocentric radius, and geodetic latitude and longitude of
the computation point in space.

(rE, V', X') geocentric radius, and geodetic latitude and longitude of
data point on the reference ellipsoid.

R a mean earth radius, taken as R=6371 km.

H, height of the computation point (r, #, X) above the refer-
ence ellipsoid; we will also call H, the upward continua-
tion distance, i.e. the distance through which the data are
upward continued to arrive at the value of anomaly in
space.

D still evaluated by (2.1.11), but now using t from (2.1.13b)
and cos ' from (2.1.13c).

2.2 Spherical Harmonics

The surface spherical harmonics of the anomalous potential T(r, , X) on a
sphere of radius "a" can be written as (Rapp, 1982):

5



with the use of either least squares collocation or Bjerhammar-type equivalent
source technique. In these methods it would still be advisable to reduce the
original anomalies Ag. to the smoothed anomalies (Ags-Agt) in order to maximize
convergence and economy of solution. The residual anomalies (Ags-Agt) are
essentially inverted into a new set of parameters (the solution vector
(C+D)-(Ags-Agt) in collocation; the fictitious quantities Ag* on the Bjerhammar
sphere, in the Bjerhammar method) and then the new parameters rigorously
generate the external gravity field. The rigor of the collocation or Bjerhammar
approach lies in that they can handle the fact that the data (Ags-Agt) are
located on a non-level surface. The main disadvantage of these methods is that
they require expensive matrix inversion.

3.3 Direct and Indirect Upward Continuation

A. Direct Method

In what we will call the direct method, either the surface free-air anomalies
ag, or the terrain-corrected free-air anomalies (Faye anomalies) AgH4tc are
input directly in the Poisson upward continuation integral to model the external
gravity anomaly field. Using the planar approximation (2.3.1) we have the
following directly upward continued fields:

UH{Aga} = 2 f f a dx dy (3.3.1)

A D°

and

(Agp + tc)D U{(Ags + tc)} " + tc) dx dy (3.3.2)(&g 27 DoDnA 0

where the superscript D denotes the direct method; the subscript H0 denotes
the upward continuation distance Ho; U denotes the Poisson upward con-
tinuation operation; Ag s is given by (3.1.1); and tc is formally given by (2.5.6).
Equation (3.3.1) is the usual simple-minded application of the classical upward
continuation solution. Equation (3.3.2) is the well-known Pellinen type of
approach (see details in the next paragraphs) in which a first order reduction
of surface data Ag s to a level surface is implemented using the terrain
correction and an assumption of strong correlation between Ag s and elevations
(Moritz, 1968, pp. 1-2).

Note that in both equations (3.3.1) and (3.3.2), the vertical position of the
level surface to which the input anomalies are assumed to refer has no
clear-cut theoretical definition. It is only implicitly required that this level
surface be close to the earth's surface, in order to minimize the differences
between the surface anomalies Ag s and the level surface anomalies Ag*. A
natural choice for the position of the reference level would be that of some
mean elevation in the area covered by the surface anomalies. In the section on
numerical investigations (section 9) we present a study of the sensitivity of
the upward continuation results to the choice of the position of reference level.
Given the reference level, the upward continuation distance Ho to be used in
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(3.3.1) and (3.3.2) follows as being equal to the elevation of the computation
point above the reference level surface.

The anomalies Ag s are anomalies on the surface of the earth, and therefore
the level surface to which Ags refers is strictly changing from point to point.
These data with changing level are therefore not directly usoable under the
problem formulation of the original Poisson integral, namely, that the data must
be on the surface of a single level sphere. However, compared with Ags, the
quantities (Ags + tc) are closer to being level surface anomalies. This use of
the terrain correction to approximate a reduction of surface data to a level
surface is discussed in Moritz, 1966, pp. 104-107. There it is shown that for
long wavelengths (n, small) we have:

- A llag (3.3.3)-=(tC)n = I- oH In

where AM=Hs-H p is the vertical distance between the surface anomaly Ags and
the level surface anomaly Ag* and the subscript n denotes the nth surface
harmonic of the quantity in parentheses. We therefore have this relation
between the harmonics for relatively small n (see (3.2.1)):

n (gs - H AH)n (Ags + tc)n (3.3.4)

where Agn is the nth harmonic of the level surface anomalies Ag*. Equation
(3.3.4) with the provision that n is small, means that in the space domain the
use of a (Ags + tcs), where now we let tcs denote a long wavelength form of
the actual tc, serves to implement a first order long wavelength reduction of
the surface data Ags to level surface data ag*. Again, as stated in the
previous paragraph, the level of ag* is not clearly defined under this
"tc-technique" of data reduction, and the sensitivity of upward continuation
results to a particular choice of reference level for 4g* will be studied in
section 9.

The use of tc instead of a tcs in (3.3.2) forms a theoretical objection to
this equation, because according to the last paragraph the interpretation of the
terrain correction as a data reduction to a level surface is theoretically
guaranteed to be valid (via (3.3.4)) only at long wavelengths. As one of the
desirable features of the indirect method to be discussed next this objection is
minimized because a tc s , i.e., a long wavelength form of tc, is used instead of
the tc itself.

13. Indirect Method

In order to explain the indirect method let us first define some quantities.

The surface free-air anomaly is given in (3.3.1) as:

20
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A g - H -t (3.3. 5)

A reference free-air anomaly can be generated from potential coefficients
to degree Nmax using (2.2.3) with H 0 (see also (2.2.4)):

Nmax n
'gs - (C(n1 cos mX + Shn sin mX) Pnm(sin *) (3.3.6)

n=2 m=O

the superscript s denoting spherical harmonics.

The gravity anomaly on the earth's surface, caused by masses of density p
lying between the actual topography and the geoid is given from (2.5.,4) as:

AgtI 2 2.rkpH- tc (3.3.7)

The gravity anomaly on the surface of a reference topography, caused by
masses of density p lying between the reference topography and the geoid is
given analogously to (3.3.7) as:

Agt2 27rkpHs - tcs  (3.3.8)

where H8 is the orthometric height and tcs the terrain correction of the
reference topography. For our purposes Hs will come from a spherical
harmonic expansion of topography to degree and order Nmax, corresponding to
the maximum degree and order of the reference anomalies AgS of (3.3.6):

Nmax n
flS A U nm cOs mX Bnm sin mX) Pnm (sin *) (3.3.9)

n=0 m=0

The gravity anomaly caused by positive and negative masses of density i,

lying between the actual topography H and the reference topography 1s can be
written as:

Agt 2 Agtl _ Agt2 (3.3.10)

Note that Agti refers to a point on the earth's topography, whereas Agt2 refers
to a point on the reference topography. Since Agt,2 is a smooth field it is

reasonable to assume that. the analytical continuation of Agt 2 to the position of
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AgtI is approximately equal to Agt2 itself. In this case (3.3.10) therefore gives

a Agt that refers to the earth's surface.

Substituting (3.3.7) and (3.3.8) into (3.3.10):

Agt :2-rxp(H - Hs ) - (tc - tcs) (3.3.11.

Now a residual anomaly Agr can be obtained by removing from the surface
anomaly ag s of (3.3.5) the spherical harmonic anomaly ags of (3.3.6) and the
topographic anomaly Agt of (3.3.11):

Agr ags - Ags -Agt, or (3.3.12)

Agr = ags - AgS - 2irkp(H - Hs ) + (tc - tcs ) (3.3.13)

If the reference quantities (those with superscript s) did not appear in (3.3.13)
then this equation would give the expression for a refined Bouguer anomaly
(Ileiskanen and Moritz, 1967, p. 132); but because of the presence of the
reference quantities we will call .gr the residual refined Bouguer anom aly.
Equation (3.3.13) states that the original anomalies Ag s are de-trended (l.) in
the long wavelength, by subtracting free-air anomalies AgS generated from
spherical harmonics and (2.) in the short wavelength, by doing a "Bouguer
reduction" not with respect to the geoid but with respect to the higher order
but still smooth surface 1s from spherical harmonics. Since agr of (3.3.12) is a
smooth quantity (as will be shown numerically later) the point on the earth's

topography at which agr applies can be moved vertically to the point on the
reference topbgraphy Hs, so that for subsequent processing Sgr is assumed to
lie on the reference topography.

Considering the above definitions, what we will call the indirect un-wird
continuation method then takes place as follows:

(1) The residual refined Bouguer anomalies ag of (3.3.13) are terrairl
corrected by tc(s , then upward continued using the Poisson integral given
by (2.3.1):

t s D [Ila f f Ltgr  + c
(agr H ,fagr + tcs5  2 f - " d- ?T 3:1.3.11H0  0gr

A 0

where the superscript D denotes the fact that (agr + t,s) is input ditr.rtly

into Poisson integral; H,, is the upward continuation distarce ;ind I'[)
denotes the Poisson integral operator. The use of (Au r + t-"s) inist,:id -4
simply jj r  is in accordancte with earlier discussion or the Aset 14f (t)Zi,'

waveler.th terrain correction (terrain corr.ctiorn itlndot has s ii )
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wavelength power-see p. 74 for a feeling for magnitudes) to approximate
the reduction of surface data to a level surface (Agr is data 'ying on the
reference topography HS). Note from equation (3.3.13) that the use of
(.lgr + te s ) amounts to the transposition of tc s to the left side of the -

equation; this significantly reduces the computational effort needed for the S
evaluation of the right hand side and is therefore a definite practical
advantage.

(2) The spherical harmonic anomalies Ag s of (3.3.6) are implicitly upward
continued using (2.2.3):

kM Nmax (n-1)(a )n+2 n
H, U gs} 2 (n-a) 2a+H

n:2 M0"

(Cnm cOs mx + Snm sin mX) Pnm(sin *) (3.3.15)

where U s denotes the upward continuation of the spherical harmonic series.

(3) The topographic anomalies acrt of (3.3.11) are implicitly upward continued
by integration of the gravitational attractions caused by the masses
generating Agt, namely, the masses lying between the actual topography
and the refererce topography (see equation (2.5.3)). In practice the
integration can be implemented using prisms as integration elements. This
prism integration is implemented in an operational program by Forsberg"-
(see section 7). In symbolic form, p

Ago u f gt} (3.3. 16-

where UR denotes the upward continuation by prism integration of masses.

(4) Adding tcs on both sides of (3.3.12), applying the Poisson integral operator
Up, and transposing terms, we arrive at:

[tpjg s  + tcs} tptAgr + tcS) f Up(Ag s) 4- Up{gt} (::.3.17)

The indirect upward continuation method consists of replacing the 1,st two
terms in (3.3.17) as follows:

I

-t)' U~fsgs tcs) - Upjagr f-t(.s, Usj~gs'5 f~&J I(N{ 3t( 18I
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that is, the operator Up operating on anomaly data AgS and &gt have been
replaced by operators Us operating on spherical harmonic coefficients and
"R operating on topographic masses. The superscript I in (3.3.18) denotes
the indirect upward continuation method, and the U1 symbolizes the
(implicit) indirect upward continuation operator. The last two terms of
(3.3.18) are given in (3.3.15) and (3.3.16).

Starting from Section 7 and onwards we give the relevant numerical
studies on the direct and indirect upward continuation methods, as well as
studies on the Fourier transform method of upward continuation. Meanwhile, in
the next three section (4, 5, 6) we present a general global study of truncation
theory for the anomaly field, spectral characteristics of the anomaly signal, and
error analysis for the (Poisson) upward continuation operation.
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4. Anomaly Field Truncation Theory at Altitude

We can collect equations from section (2.1) as follows:

Agr(r, T, X) f f K(t, ')Ag(R, *,')do' (4.1)

K(t, ~) ta(l-t2) t2- 3t3 Cos ~'(4.2)
D3

K(t, ')= (2n+1) tfl+2 pn(cos k 4.3)

n=2

Agr(r, T, X) = tn'2 Agn(R, T, X); t (4.4)

n=2

A "truncated" gravity anomaly field can be generated as follows:

I f J (t, * Ag d,' (4.5)

(0 , 0

K~t, %) = j(4.6)
IK(t, ') , *o

*0 ... truncation cap radius.

This truncated field is generated by data function values Ag outside a cap of
radius *0 centered at the computation point. In this sense, this field is really
a "remote zone" field being generated by remote zone data. The truncation
kernel can be expanded into a series of Legendre polynomials as follows:

n=0
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and the frequency domain generation of the truncated field is then given by
(see analogous manipulations in Jekeli, 1980, for example):

=gr(r, ~ Iq 1 £gn(R, W, A) (4.8)

The truncation coefficients qn can be obtained as:

f71Jn X(t, i)Pn(cos #)sin i"di (4.9)
0

f K(t, *)Pn(cOs *)sin i di" (4.10)

Putting y =cos Y,, yo =cos *0o, we have:

YO
qn(t, o K(t, Y) Pn(y) dy (4.11)

Substituting (4.2) into (4.11) and using recursive integral evaluations found in
Shepperd (1979, p. E-1) we arrive at the following recursive computations for
the truncation coefficients:

qn(,Y)=(t)(t, tYo-t 3 In(Yo) -3tI Hn(Yo) (4.12)

Ln(t, Yo) D 3 dy (4.13)

'.Yo

In(t, Yo) f Pn(y) dy (4.14)

rYO
Hn(t, YO) f Y Pn(y) dy (4.15).-
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10(yo) Yo I

n+1 (-1

Io(yo) - (y2 1)

Hny) r(ng+j_ Tn,,(Y.) + nl In-azilyil2n1 n 1

0(t, Yo ) , #t (Y - .V 1) D

I

(I~.t2 Ln-

Ln(t, Y-) Ln-t. n 2 0 t o

in1(tYo ) 12n- )o In ,(O ~- Lf n-_2) ,n2y ,l n 2 - (4.18) ""

t

The above recursive computations were checked for correctness and
stability against other published results (with excellent agreement) as part of
the studies of Cruz (1985) on truncation coefficients for various gravimietric
quantities in space. The recursive formulas (4.18) for Ln(t, Yo) which is
probably the main source of instability of the recursions can be derived either
analogously to the way Shepperd (1979, pp. B-I to B-3) derived his l(t, Y )
functions, or as a special case of a general formula given by Jekeli (1982,
equations (18) to (22)).

The truncation method expressed by equations (4.5) and (4.6), where the
original kernel K(t, -.) is set to zero for 0 is in accordance with what
is referred to as an unmodified Molodensky truncation method. Other methods
of truncation can be defined by specifying the truncation kernel as in (4.6),
and deriving, using (4.9), the truncation coefficients that will enter (4.8). "
Well-known alternative methods for generating a truncated field include the
theissl truncation method and an improved Molodensky truncation method, all
these being discussed in Jekeli (1982).
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The interest in truncated fields usually lies in trying to generate the
various truncated fields (unmodified, Meissl, or improved Molodensky truncated
field) from a finite set of available spherical harmonic coefficients of the
earth's gravitational potential. This is in contrast to generating the field from
a set of Ag values on a geocentric sphere. The spherical harmonic generation
of the truncated field can be accomplished by using in (4.8) the surface har-
monics Agn generated from potential coefficients to degree Nmax (see Rapp,
1982, p. 4). Specifically, we can collect the necessary equations for the
spherical harmonic generation of a truncated anomaly field at altitude, as
follows:

Nmax
Ag.(r, T, X) F qn(t, Yo) Agn(R, V, A) (4.19a)

n=2

g.g(r, n, 2) kM ma fa (+ihg (r, F qn(t, y.) "(n-1) (2

n=2

n..

__ (Cnj cos mA + Snm sin mA) Prm(sin W) (4.19b)
m=O

t R R (4.19c)
R+Ho r

Yo cos 4 0  (4.19d)

where

r, W, A geocentric radius, geocentric latitude and
"geocentric" longitude of the computation point;

qn (t, Yo) truncation coefficients;

Agn(R, W, X) surface harmonics of the spatial anomaly field, on a
sphere of radius R;

R a mean earth radius, taken as R=6371 kin;

2 an average value of gravity;

Cm, Snm fully normalized potential coefficients with even
degree zonal reference values subtracted;

a radius of the sphere to which C~m and Snm refer,
usually an equatorial radius;
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Ho height of computation point above the sphtrl, (,r radius

angular radius of the truncation cap

The truncated spherical harmonic field "Ngr' given in (1.19b) contains two
types of errors: the commission error, which is the error due to errors in the
potential coefficients being used, and the omission error, which is the error
due to the use of only a finite set of potential coefficients and the consequent"
omission of the higher frequencies which may exist in the actual truncated
field 1",r being represented. The combined global mean square value of
commission and omission errors can be expressed as (Jekeli, 1980, p. 16; see
also (4.19a):

-- =! Nmaxl |

2- n .5C 4 q C .'4. 20)
n-2 nzNmax+1

where

qnl truncation coeff icients as found from equatiois (4. 12) (1. 18)

6 Cn anomaly error degree variances re'ferred to a sphere of radius
R (R=6371 kin, the mean earth radius). eCn_is caused
by potential coefficient errors CiCm and llm. Consideri
(4.19b) we have:

S

6Cn  --7,(in 92 n [('C n)2 > .Sn m 2]; 'kl.21a)

Cn  modeled anomaly degree variances referred to a sphere of radius -

R. According to the Tscherning/Rapp (1974) model (with
RL6371 kmi):

Cn 425.28(n-1) (0.9996 17)n+2
(n- 2) (n+24)

Optimization of truncation method usually means modifying the definition (1.6)
for the kernel K(t, *') (and therefore modifying the truncation coefficients q,,)

such that the mean square error ff in (4.20) is reduced compared with ilhe

unmodified case, for a given number and accuracy (Nmax ;Ind 6Cn) of potential

coefficients and given model (Cn ) for anomaly degree variances. Jokeli (19M2)

hats shown that for the upward continued gravity ainmaly field, optimri/.aotion of'
trur catimi method by iising the Meissl or impr)ved Molodcrns ky techtni qu, d('
not offer a significant improvement over the unmodified Moh )de risky met.h(,id .
defined by (4.5) atnd (4.6). In this report we limit ourselves to the use of the
unrnodified trurcation method.
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As an application of the important equations (4.19) and (4.20) of this
section, we considered the main interest in this report, namely, the upward
continuation of anomalies in the New Mexico area to an approximate altitude of
28.5 km. We first applied (4.19) by modifying program F388 at OSU (see-.
Section 7) to introduce the truncation coefficients qn(t, Yo). We used:

* the Rapp-180 field (Rapp, 1981)

H= 28.5 km (upward continuation distance)

y 979770 mgals (mean value of gravity)

o = 3' (truncation cap radius)

* a = 6378137 m (equatorial radius)

R : 6371000 m (assumed ground level radius)

The coefficients qn were computed by a subroutine modified from a subroutine
published by Shepperd (1979). The resulting truncated anomaly field for the
area of interest in our balloon-borne gravity experiment (Section 8) is given as
Figure 1.

If we were using the Rapp-180 field to account for the remote zone outside
a 3"-cap centered at the computation point, the values on the map would be
added to the result of integration of data inside the 3°-cap. Note that in this
case the data cap of integration moves from computation point to computation
point. For our final operational procedures, however, we simply used a fixed
data cap to compute our anomalies in space and neglected remote zone effects:
this neglection is justified by selecting a sufficiently large size for the fixed
integration cap. In the case just considered an integration cap of radius 3* is
appropriate since the remote zone effects are small as shown in Figure 1.

Let us now turn to an application of equation (4.20). Application of (4.20)
yields a global analysis of the effect of remote zone anomalies on the upward
continued anomaly and gives an indication of the ability of spherical harmonic
model to account for this effect. As a first application we used only the
second term of (4.20) and started the summation from n=2. This is equivalent
to not using any spherical harmonic model to account for the remote zone
effects, the total error being one of pure omission. Using the Tscherning/Rapp
(1974) Cn-model (4.21b) the results of summing the second term of (4.20) for
altitude 30 km and various truncation angles are shown in Figure 2 as the top
curve. This curve shows that a cap of radius 3" is needed to reduce remote
zone effects to submilligal level; the 3" cap radius (about 300 km at ground
level) is about ten times the upward continuation distance of 30 km and is
therefore in accordance with the rule that data out to a distance ten times the
upward continuation distance should be used (Hirvonen and Moritz, 1963, p.
68).
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Figure 1. Rapp-180 Truncated G-avity Anomaly Field at 28.5 km Altitude, New
Mexico Balloon Gravity Test Site. C-I. 0.01 mgal; Truncation Cap Radius 3'.
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Omission Error When No Spherical
Harmonic Model is Used to Represent7 the Remote Zone Field

Commission Plus Omission Error
When the Rapp-180 Spherical Har-

Smonic Model is Used to Represent
LD the Remote Zone Field

ccCc
cc
cn

c .2'..4

CRP RDIfUS (DEGREES)

Figure 2. Frror Incurred When Not Using and When Using a Spherical
Harmonic Model to Represent, at Altitude 30 km, the Remote Zone Field
Generated by Data Outside a Cap of Given Radius. Cn-model from
"'TSherning/Rapp (1974); 6 Cn from Rapp-180 field with mi'- 10 mgals (Rapp,
1981, eq. 30).
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With the numerical values of Co = 683 (mgal 2 ), d = 40 km and A implied by 5'x5'
blocks we compute

mll = l1.6/H2 regal (H in kin).

So for flight elevation 1 30 km

in30km C 0.013 mgal

which is a much smaller contribution than any of the effects given in Table I
or 2. A spherical-earth analysis of the representation error for gravity
anomaly upward continuation may also be done based on Sunkel (1981, p. 17);
however, the effect of representation error is so small (using 5'x5' mean
values) that we do not repeat this type of analysis here.
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Cts) 2 M(Agag') is the covariance function of actual gravity anomalies,
that is a statistical characterization of Ag field itself (and not
the errors in Ag)

'ter (Moritz, 1962) assume the following model covariance function for gravity
iomalies:

C(s) (S (6.3.5)t*(a)2

iere C0 is the assumed gravity anomaly variance.

e define a constant a such that a2 - C then in first approximation

i.3.5) reduces to: d

C(s) : C0  - C( 2  (6.3.6)

-sume ilso all blocks are squares having the area Ai - a2  a 2 = A.

hen (Moritz, 1962) gives the following closed expression for the mean square
presentation error (6.4.3)

all a- r. (6.3.7)

here

quation (6.3.7) gives the effect due to a single compartment. Next, neglecting
gain correlations between compartments we can find variance of the total
ffect just by summing variances of each contributors:

i :1 84-T I

r Jl .Oi q ,, f F12 where a and b form the sides of the block.

h is is the squnre root of error variance of upward continuied repr.'semiciti' -
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where Di is defined by the relation:

D Al f f D3 with D1 H2l (N<-X.<)2 ( y'y)
2

Ai

and A i is the area of the rectangular block which is represented by the mean
value -

Define the error of representation t to be the function such that over each
rectangular block i the following relation holds:

I, - i(6..2)

which is the difference between Ag and the constant 'T-7 over the rectangular
block i. Then, from (6.1.2) the propagated error of representation due to
single block i is:

r P
= 2-rJ JiD dA r ;. :2 :/'

Ai

h!,re th, tot a representation error is the sum of' qi's.

Sinilarly to (6.1.1) the mean square representation error due to single blorh"
a t  x h is:

- Yo x 2 Y,

F",x:, y, F(x', y') C(S) dxdy dx'dy' (6.3. 4)

x x V I is th,- Cirtesian dis ;tance on p lane

(I rre;F,(j,,uent lv F'x, y dl (Iy 0

A1



terrestrial data should be avoided as much as possible, because these cause
errors to show up significantly in the upward continued anomaly field. Note
from Table 2 that the larger the error correlation length the slower the rate at
which the error loses its total energy (variance) with altitude, an expected
result.

Table 2

Upward Continued Error Variance and Correlation Length,
for Attenuated White Noise Error Model.

vR = 100 mgal 2

HI=30 km H=10 km H5 km

IR -"Vr Vr r
(km) (km) (mgal) (km) (mgal) (km) (mfgat)

2 47 0.42 17 1.18 10 2.10

5 50 1.00 20 2.50 12 4.00

10 55 1.82 25 4.00 18 5.71

30 75 4.00 45 6.67 38 8.00

6.3 Flat-Earth Representation Error Propagation

The effect of representation error can also be evaluated. This error is
committed when the continuous function Ag is replaced by the step function
composed of the mean values representing it over rectangular blocks used in
computation. See (Sunkel, 1981). Following (Moritz, 1962) where the same
error was considered (but under the name of integration error) we pose the
problem in the following way:

Inst,:id of the exact Poisson's integral (6.1.1) in the actual computation we. use
t e summation:

Ii A_;ll ._ '-: -- -(6.3 . 1"
Di.
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from (6.2.4). In Figure 5 we show the covariance function (6.2.4) for r=R (i.e.,
on the surface of the earth) and varying depths (R-Rb) to the white noise
process. Figure 5 shows clearly the relation (6.2.5); the graphs were scaled to
yield the variance Vr=100 mgal 2 .

The functions (6.2.4) such as shown in Figure 5 can be used as error
models, on the earth sphere, and it is of interest to see how these functions -

propagate through the upward continuation operator for gravity anomalies. We -

have the following procedure for applications:

1. we have, given, the error variance v R and error correlation length 4 R of
the error process that we want to model on the earth sphere R.

2. the depth D (not to be confused with the same symbol in (6.2.2)) of the
white noise process generating R is then found from (6.2.5):

D (R-Rb) 2 tR (6.2.7)

3. the constant of proportionality in (6.2.6) is found from

const. vR(R-Rb)2  vR D2  (6.2.8)

4. the upward continued error variance at altitude H above the earth sphere
R is found by applying (6.2.6) with r=R+H and Rb=R-D:

const. D )
vr (rRb - vR HD (6.2.9)

5. the upward continued correlation length tr is found from (6.2.5):

3 3
r (r-Rb) z ,_ (H+D) (6.2.10)

2'-2

We applied (6.2.7) - (6.2.10), starting with vR=100 mgal 2 and various
correlation lengths tR. The upward continued values vr and tr for various
upward continuation distances are shown in Table 2. The values (Vr)5 in the
table are directly comparable with the values mH in Table 1, and we see a
reasonable agreement; note that (vr)' has no specific problems associated with
largfe correlation lengths (R whereqs mH has problems with this as mentioned in
Section 6. 1. The conclusion from Table 2 is that error correlations in the
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D(P, Q) a 0o2 (2n + 1) Pn(cos ') (6.2.2)

n=2
where we start the summation from n=2 in anticipation of inputting D(P, Q) to
an upward continuation operation that starts with n=2. D(P, Q) represents a
dirac delta function (Rummel, 1982, p. 30):

S- for P Q
D(P, Q) : P, Q Z a (6.2.3)

0 for P / Q

that is, the total variance is infinite and the correlation length is undefined.
To obtain a finite variance and correlation length we upward continue the noise
process, resulting in the attenuated covariance function (note that we are
using the gravity anomaly upward continuation operation):

Dr(s, a) ' o -s n+2 (2n+1) Pn(cos $) (6.2.4)

n=2

where s = , ,

we visualize that the white noise process is located on a sphere of radius Rb
internal to the earth sphere of radius R, and the attenuated white noise
process described by (6.2.4) is located on a sphere of radius r with r>Rb.

Two important quantities to characterize the covariance function Dr are its
variance vr and correlation length r. A numerical study of (6.2.4) reveals the
following good approximations:

(r-Rb) 2 (6.2.5)

const.
vr (r-Rb) 2  (6.2.6)

that is, the correlation length r is 1.5 times the upward continuation distance
(r-Rb), and the variance of the attenuated white noise process attenuates with
the square of the upward continuation distance. The same relations were
found by Sunkel (1981, p. 12, 14) for a slightly different covariance function
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Now we can evaluate (6.1.6) using different trial correlation lengths i at
different elevations H. The results are shown in Table I using the parameter
a,:(10 mgal) 2 . The closed formula (6.1.6) was derived under the assumption
that the ratio /H remains small (see Moritz, 1962, p. 7). For that reason the
numbers in the lower right-hand portion of Table 1 have been crossed-out as
they are considered not to have any physical meaning.

To overcome this assumption see below for a spherical earth analysis.

Table 1

Square root of upward continued error variance at different elevations

m H in [mgal] ao = 100 mgal 2
(crossed-out values have no physical meaning)

Assumed correlation
distance in error
function at zero
level ( in [km]) H = 30 km H = 10 km H 5 km

2 0.28 0.85 1.70

5 0.71 2.12 4.25

10 1.42 4.25 .9"15

30 4.25 25--V

6.2 Spherical-Earth Data Error Propagation

Let us now study the propagation of data error through the upward
continuation operation, using as error model an attenuated white noise process
(see Heller and Jordan, 1979, for interesting geodetic applications of such
process). The degree variances of white noise can be written as:

dn -ao (2n+l) (6.2.1)

where the unit variance a02 is a constant and is equal to the variance of a
single harmonic of degree n and order m of the white noise process. White
noise is useful for approximating an uncorrelated noise process.

The rovariance function corresponding to (6.2.1) is:
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1981). Equation (6.1.3) shows that the weakly correlated (white) noise in the
data will attenuate very rapidly with the elevation H, whereas the long
wavelength widely correlated components of the noise will propagate almost
unattenuated into upward continued gravity field.

This discussion shows that the correlation length of the errors present in
the gravity material will play the major role in the upward continuation error*
analysis.

As a statistically appropriate measure of the upward continued error -
function (6.1.2) we choose (after Moritz, H., 1962) the mean square error
defined as:

dxdy (6.1.4)H) m2H- 47r2 U j(x, y, x', y') D3 36

X y x y

where a(x, y, x', y') = M(z, E') is the error covariance function, which is a
statistical description of the errors z(x, y) in Ag. M is the suitable averaging
operator.

In (Moritz, 1962) it is shown that introducing some specific model of the
error covariance function we can produce explicit expressions for the upward
continued mean square error (6.1.4).

Suppose we model the error covariance function present in Ag to be
(Moritz, 1962, p. 3):

e(x, y, x', y') =o e-C2S 2 = a(s) (6.1.5)

which is a function of distance only (stationarity and isotropy). In eq.
(6.1.5):

s = (x-x') 2 + (y-y,)2 is the Cartesian distance between two locations
on the plane.

ao is the error variance (square of the standard
error present in the datum surface anomalies Ag)

The constant c -1n2/ is inversely proportional to the correlation
length 4 of the error function present in Ag (f has to be in the same units as
s and H).

Using this model (Moritz, 1962) shows that the mean square error (6.1.4)
present in the upward continued field takes the simple form:

m 81 2 c 2 
26. 1. 6)
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6. Error Propagation for Upward Continuation Operator

6.1 Flat-Earth Data Error Propagation

Based on (Moritz, H., 1962) we can formulate the problem in the following
Wa.k y.

The upward continuation integral (in planar form) for gravity anomalies is:

Ag= 1(x, y) 2 f j Ag(x' y') D (6.1.1)

where x'y' are variables of integration,

D2 = H2 + (x-x,)
2 + (y-y,)

2

H is the upward continued distance.

Then fruimally any error t(x, y) in terrestrial Ag will propagate as:

0

)t(X(XY) - 2 ( ' ) D' (6.1.2)

Equation (6.1.2) has the exact form of the original Poisson's integral with
gravity anomalies Ag replaced by the error function t. As the computational
point (x, y) sweeps the particular level plane at the elevation H above the
reference datum plane, the function -Il(x, y) describes the variation of the
directly propagated (upward continued) error.

Formula (6.1.2) describes the sensitivity of the upward continuation
operation to the uncertainties in the data. It assures that the errors attenuate
according to exactly the same law (upward continuation law) as the original

data. The frequency domain equivalent of formula (6.1.2) is: (see eq. 2.4.4)

-H277/k k (6 1.3)

EH(kx, ky) =e • ~x y 613

where s, E and LH, E H are Fourier transform pairs and kx, ky are spatial
frequencies along x and y directions (Robinson E.A., M.T. Silvia, Chap. 2.4,
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Figure 4. Anomaly Degree Variances at Altitudes 30, 60, 100, and 150 km.
Tscherning/Rapp (1974) Anomaly Degree Variance Model Used.

A-D 160km __-__

LD 50

0 ~ 20_ 

0___ 

__

cb. 4. 10 120. 160. 200. 2LJ0. 280. 3?0.
DISTANCE (KM)
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Length 3/2 D.
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Figure 3a. Gravity Anomaly Information Beyond Degree N, for Altitudes 30, 60,
100, and 150 km. Tscherning/Rapp (1974) Anomaly Degree Variance Model
Used.
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Figure 3b. Gravity Anomaly Information Generated by (Remote Zone) Data
Outside a Cap of Given Radius, for altitudes 30, 60, 100, and 150 km.
Tscherning/Rapp (1974) Anomaly Degree Variance Model Used.
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The sum (5.4) is important for studying the remote zone effects on upward
continued anomalies.

Formulas (5.1), (5.3), and (5.4) were used at altitudes 30, 60, 100 and 150
km, the results being given as Figures 3a. 3b. and 4. The Tscherning/Rapp
(1974) CnR-model was used (see (4.21b)). Figure 3a gives the gravity anomaly
information beyond degree N: for example, using a 180-field to represent the
external anomaly field leaves 5 mgals to be resolved at 30 km, 1.7 mgals at 60
km, 0.4 mgal at 100 km, and 0.1 mgal at 150 km. Figure 3b gives the gravity
anomaly information due to data outside a cap of given radius: for example,
using a truncation radius of 3' leaves a 0.9 mgal remote zone anomaly at
altitude 30 km, 1.8 mgals at 60 km, 2.8 regals at 100 km, and 3.8 mgals at 150
km. A combined interpretation of Figures 3a and 3b says that the higher the
point of upward continuation the larger the data cap needed to maintain a
desired accuracy level (Figure 3b), however, at the same time the resolution
needed for data inside the cap becomes less and less with altitude (Figure
3a) - this conclusion is well-known and is true for the computation of all
gravimetric quantities in space. Finally, Figure 4 gives the degree variances
of the anomaly field at altitudes 30, 60, 100 and 150 km to show the effect of
upward continuation on component powers of the field.
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5. Global Characterization of Anomaly Fields

A most common statistical characterization of anomaly fields can be made by
giving the degree variances of the field, which gives the break down of field
power by wavelength. Given the degree variances CnR on a sphere of radius
R, the degree variances on an external sphere of radius r is given by using
(2.1.5) and analogous derivations to Heiskanen and Moritz (1967, p. 260-261):

Cnr sn+2 CnR ; s = (5.1)

The factor sn+2 indicates how each component wavelength power of the field
attenuates with the upward continuation distance (r-R). Note that the degree
variances CnR correspond to the power of field features on a sphere of radius
R, these features having a minimum half-wavelength of approximately:

X Rn (linear units) (5.2)

A second field characterization is obtained by summing the degree
variances of the field above a specified degree N. This sum gives a measure of
the amount of field information (RMS) beyond the harmonic degree N:

6Agr(N) Cnr (5.3)

n=N

The sum (5.3) is important because given the resolution N of a particular field
approximation, the sum indicates how much field information (RMS anomaly) is
left unresolved by the approximation.

A third method of global characterization is obtained by giving the mean
square upward continued anomaly on a spatial sphere, caused by boundary
values of Ag outside a cap of radius *o, for various heights of the spatial
sphere. This mean square anomaly is the same as the mean square anomaly of
the truncated field defined by (4.8) and can be obtained from (4.20) by using
only the second term of that formula and starting the summation from n=2:

6Ag (t, *0) - qA(t, *o)CnR (5.4)

n=2

t r
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For a second application of (4.20) we introduced the Rapp-180 field to
account for the remote zone effects (Nmax=180). In addition we used a more
optimistic set of errors associated with the Rapp-180 potential coefficients,
found by using mAg=10 mgals instead of 20 mgals in equation (30) of Rapp
(1981). Again using the Tscherning/Rapp Cn-model and upward continuation
distance of 30 kin, the total error (commission plus omission) incurred by using
the Rapp-180 field to account for remote zones were computed by (4.20) for
various truncation cap radii and plotted as the bottom curve of Figure 2. We

*- see that now the total error is drastically reduced compared with the case of
* the top curve where no spherical harmonic model is used to account for remote

zones. For a truncation radius of 3', the error reduced from RMS 0.9 mgal to
RMS 0.1 regal. For a truncation radius of P, the bottom curve of Figure 2
shows that the use of the Rapp-180 field to account for the remote zone field
incurs a commission plus omission error of 0.45 regal global RMS.

Note that Figure 2 represents a global error analysis that may not be
representative of a local area. Figure 1 is more suited for analysis of specific
areas. For example, Figure 1 says that for a truncation radius of 3- it is
immaterial whether we use the Rapp-180 field to account for the remote zone or
not because the Rapp-180 truncated contributions are small anyway. On the
other hand Figure 2 says that not using the Rapp-180 field at truncation angle
of 3" causes an ommission error of 0.9 mgal RMS, and the use of Rapp-180 field
decreases this error to 0.1 regal (commission plus omission error).

3
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7. Operat.ional Program for the Generation of Anomaly Fields

In this section we summarize the programs that can be used to
operationally generate the different types of anomaly fields we use in this
report. These anomalies are the Poisson anomaly, the spherical harmonic
anomaly, the topographic anomaly, and the Fourier anomaly.

What we call the Poisson anomaly field is generated in planar approximation
as (2.3.1). A Poisson anomaly field can be operationally generated using a
FORTRAN program fully documented in Rapp (1966). The program accepts 5'x5'
mean anomalies as boundary values in the flat-earth upward continuation. For
a more detailed field generation smaller blocks of 2!5x2!5 mean anomalies may be
input near the computation points, and the program then automatically rejects
any 5'x5' mean anomalies covered by the input 2'5x2!5 values. The program
also has the useful feature of rigorously computing the normal gravity
corresponding to the anomalies being computed, the sum of these two quantities
being a model for observed total gravity. The program exists as program F499
in the O9 U program library.

For the generation of spherical harmonic fields, there are two types of
existing operational programs that can be used. If the intention is to generate
anomaly values at individual points not on a grid, the program described in
Rapp (1982) can be used. If, however, values on a limited grid are desired
then the program described in Rizos (1979) can be used. The program by
Rapp, to generate values at individual points, exists as program F477 in the
OSU program library, and the program by Rizos, to generate values on a grid
exists as program F388. A comparison of these and other spherical harmonic
programs is given in Tscherning et al. (1983). The input to F477 and F388 are
the set of potential coefficients and the geodetic latitude, longitude and height
above the reference ellipsoid (,, X, h) of computation points. The set-up of the
programs is to implement equation (2.2.2); however, for reasons stated below
e:,quation (2.2.2), we have slightly modified P477 and F388 for our applications
to compute (2.2.3) instead.

Another anomaly field *f interest to us is the topographic anomaly field,
generated by intergrating the gravitational effects of topographic masses of
a.ssumed density. The operational generation of a topographic anomaly field
can be done using the FORTRAN program described in Forsberg (1984) and
existing as OSU program 489. There are various modes under which the
program runs, as detailed in Forsberg (ibid.), but the most important one for
the purpose of our studies is that for computing the external gravity anomaly
field generated by the (positive and negative) residual masses lying between
the actual topography defined by a digital elevation model, and a reference
topography such as the topography to 180 spherical harmonic expansion.
Another mode of interest to the procedures recommended in this report is the
terrain correction (tc) computations which will be needed in case the tc are not
given on the gravity data records.

Finally, by Fourier anomal:y we mean an anomaly which is upward continued
using Fourier transform techniques. For the generation of a Fourier anomaly
field we usL(d a simple program given in Appendix B and existing as OSU
program P498. The theory behind this program is detailed in Section 2.4 and

17
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tests are conducted in Section 9.3. A more extended program for Fourier
upward continuation exists in the OSU Department of Geology (R. von Freest
private communication), and this program has options to choose from among
several different windowing techniques. However, our tests with this program
have not shown a need for the application of windowing for gravity anomaly
upward continuation.

A
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8. Data Preparation for Upward Continuation Tests in New Mexico

For testing alternative models for the operational upward continuation of
surface free-air anomalies, we prepared data in a 7"x9" area in New Mexico.
The location of the area is such that it centers the site of the balloon-borne
gravity project coordinated by the AFGL (Lazarewicz, et al., 1983), with surface
data coverage extending 300 km on all sides of the balloon flight.

8.1 Available Gravity and Elevation Data

Our gravity and elevation data was based on that supplied to us earlier
(April, 1983) by the National Geodetic Survey (NGS). The gravity data were in
the form of irregularly distributed point values of surface free-air anomalies,
as shown in Figure 6. The gravity data record included the following items

(Hittelman et al., 1982):

(1) Geodetic latitude (0), geodetic longitude (X), and orthometric height (H) of
the station.

(2) Measured gravity (g) referenced to a recoverable base station. Base
stations had been adjusted to the International Gravity Standardization
Network 1971 (Morelli, et al., 1972).

(3) Normal gravity (y) at the Geodetic Reference System 1967 (GRS67) reference
ellipsoid, computed as:

- = 978031.85(1 + 0.005278895 sin 2 * +

+ 0.000023462 sin4 *) mgals (8.1.1)

(4) Surface free-air anomaly (Ag}) computed as:

Ags = g + 0.3086 H - y (8.1.2)

where 0.3086 mgal/m is the normal gradient of gravity.

(5) Simple Bouguer anomaly (Ag') computed as:

Ag'B = Ags - 0.1119 H (8.1.3)

where the term 0.1119 H is the attraction of a Bouguer plate of standard
continental density of 2.67 g/cm 3 .

(6) Terrain correction (tc) formally given by (Moritz, 1966, p. 88):
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tc kp (8.1.4)
01 0

where k Newtonian gravitational constant, p density; R = mean earth
radius; H = elevation; P = point to which tc refers; q unit sphere;
da = element of solid angle; to 2 R sin -0/2; 0 angular distance between
P and da.

(7) Standard error of Ags and 49' B .

(8) Various codes: Agency code, quality code, elevation code, and source
code.

There were a total of 18,386 original gravity points in our area. Out of these,
13,455 were NGS coded as 'ACCEPTED' while 3,931 were coded as 'NOT EDITED'.
We decided to consider all the 18,386 points regardless of code as input to the
data thinning step (see Section 8.2 below).

The elevation data were in the form of 30x30 arcsec grid point values. The
data covered our 7"x9" New Mexico area except at three l'xl" blocks in the
southwest corner from latitude 29' to 30" and longitude 251 ° to 254. We
decided to fill these missing blocks by 5'x5' mean elevations from data supplied
by the Defense Mapping Agency (DMA). The NGS data were used in our
procedures both as the original 30"x30" point values and to obtain 5'x5'
averaged values. The 5'x5' mean elevations were formed by straight averaging
all 3 0"x30" values that fell indide the 5'x5' block (disjoint averages). A
contour map of the topography in our area based on 5'x5' mean elevations is
shown in Figure 7 for a contour interval of 50 meters.

8.2 Data Thinning

The original set of 18,386 NGS points shown in Figure 6 were input into a
data thinning procedure. This step was done to make the data distribution
more uniform and to later avoid collocation inversion problems associated with
data points that are very close together. To thin out the data a single pass
was made to select only the first point that fell inside each element of a
3.5 km 3.5 km (A* = 2!0, &X = 2!5) grid mesh. After the thin out procedure a
total of 10,208 data points were left. Of these, 2 points were later discovered
as blunders and removed leaving a final selection of 10,206 points which are
shown in Figure 12 of Section 8.7.

8.3 5'x5' Mean Anomalies

A mean anomaly can be derived by first subdividing the mean block into
pxq sub-blocks, predicting point anomalies at the centers of the sub-blocks,
then averaging the predicted point anomalies. A predicted point anomaly is
given by least squares collocation as follows: (Rapp, 1978, p. 134):
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g CiT (Cjj Djj)- Agj

where

Cij anomaly covariance vector between the point i being predicted

and the data points j.

Cjj anomaly covariance matrix of the data points

IDjj error covariance matrix of the data points, taken as diagonal
with elements the variances of the data points.

Aspects on the covariance function to use in (8.3.1) and on the removal of
known trends in Agj are discussed separately in Sections (8.4), (8.5), and
(8.6).

The mean anomaly is related to the pxq center point values inside the
block by

,g Agi  (8.3.2)
pxq'

Substituting (8.3.1) into (8.3.2) we get

. Tg c (Cjj + Djgj)- 1 Agj (8.3.3)

where

C = Cij  (8.31.4) -.

A pxq.-"

is approximately the covariance vector between the mean value and the data
points j. Equation (8.3.4) expresses a numerical integration procedure
(Heiskanen and Moritz, 1967, p. 277) for the determination of mean value to
point value covariance using a pq subdivision of the mean block. Equation
(8.3.3) expresses the direct prediction of the mean anomaly from given point.
anomaly data. The standard error of the predicted 7g- is the square root of:

m g - C- - T (C + D - C (8.3.5)
Ag %ag Sgj (Cii j Ag

where C- is the variance of the mean value being predicted, given
approxim akly by
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VJ

pq 2_ (8.3.6)

i=1 k=1

that is, C-" is the average of all covariances between subdivision block
center points inside the mean block.

For our applications to be detailed later (Section 8.7) we used equations
(8.3.3) to (8.3.6) to predict 5'x5' mean anomalies from the the thinned out data
of Section 8.2. We used a 2x2 block subdivision (p=2, q=2) and only the ten
closest data points to the center of the 5'x5' block being predicted. The
limitation to ten data points was motivated by the computer expense required
to invert the matrix in (8.3.3) with dimension equal to the number of data
points. This (approximate) collocation from the ten closest data points was
compared with a more rigorous but much slower collocation, giving a mean
difference of 0.1 mgal and an RMS difference of 2.7 mgals for a 12x12 array of
prediction points in the data sparse 1'xl" area from latitude 30" to 31" and
longitude 254" to 255' (See Figure 12 for data distribution). The predicted
quantities were refined Bouguer anomalies with roughness (standard deviation
from the mean = 15 mgals for the l'xl" test area) shown in Figure 13. The
differences between the rigorous and approximate collocation are expected to
get smaller in the immediate area of the balloon flight because of the increased
density of data there. The rigorous collocation used a one-time inversion of a
matrix of size 524x524, giving data coverage out to (r5 away from the
prediction points while the approximate collocation used 144 inversions, with
each inversion involving a l0xl0 matrix. The rigorous collocation was about
100 times slower than the approximate collocation in this test case.

Theoretical and practical aspects on the choice of covariance functions to
use in (8.3.3) and ways to de-trend the data are discussed in the next three
sections.

8.4 Covariance Function

The covariance function to use in (8.3.1) or (8.3.3) is well-defined only in
the global case. However, for local applications the choice of covariance
function to use is rather arbitrary. This arbitrariness comes from the fact
that the covariance function to use should be tailored to approximate the local
empirical covariance function, and this local function has no clear-cut
theoretical definition. The most important questions are: what size of local
area should be used to derive the function?, and what trends should be
removed from the data? Once a practical decision has been made on these two
items, however, the estimation procedure becomes clear: The empirical
covariance function is first derived by averaging products of de-trended data
samples in the specified area, according to the definition of covariance function
(Heiskanen and Moritz, 1967, p. 253). The derived empirical covariance function
is then usually approximated by a simple analytical function that lends itself to
closed form covariance propagation if needed, resulting in a self-consistent
system for the estimation of various linear functionals of the earth's anomalous
potential. The way to approximate an empirical covariance function by an
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analytical function of specified form, is by satisfying the three essential
parameters of the empirical function, namely, the variance, correlation length,
and curvature parameter (Moritz, 1980, p. 174).

For our applications we used a simple tailoring procedure for the covar-
iance function. We took the global anomaly covariance function of Tscherning
and Rapp (1974) and first subtracted the first 36 harmonics. This resulted in
a new covariance function with a correlation length of about 20 km, approx
imating the correlation length of the de-trended data (see below) used in our
estimation procedures. The covariance function was then scaled to satisfy the
variance of the de-trended data. This scaling would not affect the previously
tailored correlation length. For the curvature parameter, there was no specific
treatment given to satisfy the data; the practical problems associated with the
empirical computation of the curvature parameter, as well as its approximate
computation by finite differences, can be found in Schwarz and Lachapelle
(1980).

8.5 Data De-Trendijng -_at Bigh Fr re_quencies

It is well-known that short wavelength free-air anomalies are strongly
correlated with short-wavelength topography - for an instructive physical
interpretation of this fact using a simple crustal density and isostatic con
pensation model, see Moritz 1968, p. 28. Therefore, the computational removal
of the attraction caused by topographic masses is certain to remove most of
the roughness that may be present in an anomaly field.

This removal of roughness of the field is very important in interpolation
problems. With the removal of as much roughness as possible, the correlation
length of the residual field will be enlarged as much as possible. This implies
that the ratio

correlation leng~th
mean data spacing

will also be enlarged as much as possible, and this is a key to strengthening
the interpolation of the residual field (see Sunkel, 1981, pp. 88-93, where
values of p of at least p=3 are indicated to be desirable). Of course, ore the
interpolated value from the residual field has been obtained,the total field
value can be obtained by adding back the influence of topographic masses.
'[his influence is computable from detailed topographic height data which are
assumed to be readily available in the prediction area.

Anomaly data de-trended at high frequencies can be the simple or the
refined Bouguer anomalies. The simple Bouguer anomaly is given by (8.1.3):

, g. 0.1119 H (8.5.1)
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where -0.1119 11 means the removal from surface data Ag s of the gravitational
attraction of a moving Bouguer plate of standard density 2.67 g/cm3 . The
refined_BoUguer anomaly is given by:

AgB Ags - 0.1119 H + tc (8.5.2)

where tc is the gravimetric terrain correction formally given by (8.1.4).
Whereas (8.5.1) represents the removal of a moving Bouguer plate, the
application of tc to (8.5.1) to arrive at (8.5.2) means that now in (8.5.2) the
gravitational attraction of the actual (non-moving, fixed) topography is removed
from Ag s . The tc were given for our NGS gravity data; if they had not been
given, we would have had to compute them using the operational program by
Forsberg (see Section 7). Such computations of tc tend to be expensive (about
0.2 CPU sec per point on the Amdahl 470 V/6 system) if they have to be done
for all observation points. In this respect the studies by Sideris (1984) on the
computation of tc by Fast Fourier Transforms (FFT) should prove to be very
important.

8.6 Data De-Trending at Low Frequencies

The Bouguer anomalies produced by (8.5.1) or (8.5.2) are much smoother
than the original Ags field but are biased, having large and systematically
negative values in mountainous areas - again, it is instructive to see Moritz
(1968, p. 28) for a physical explanation of this fact using isostatic compensation
theory. In accordance with the statistical aspect of the least squares
collocation interpolation procedure, gross trends should first be removed from
the data before interpolation (see Moritz, 1980, Sec. 38: "The Meaning of
Statistics in Collocation"). To de-trend the Bouguer anomaly data, one way
would be to postulate a low order trend surface and fit this surface to the ..

data, possibly in the context of least squares collocation with systematic -'-.

parameters (Sunkel, 1983), or possibly in the context of a simple least squares
adjustment. For our purposes we de-trended the Bouguer anomaly data using
available spherical harmonic expansions to 180 of free-air anomaly and topo--
graphy. The effect that the de-trending at low frequencies has on inter--
polation results is described later under Section 8.7, step (7).

The free-air anomaly on an equatorial sphere can be generated from
potential coefficients to degree Nmax, using (2.2.3) with H=0 ::

Nmax n

Ag - kM Nm (n-l) - (C cos mX + Snm sin mX) Pnm (sin 0) (8.6.1)

n--2 m=0

(the superscript s denotes spherical harmonics). The topography can also be
expanded in terms of spherical harmonics to degree Nmax:
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Nmax n

Hs F (AnM cos mX + Bnm sin mX) Pnm (sin c) (8.6.2)

nO m=0

We then have a Bouguer anomaly to resolution corresponding to harmonic
degree Nmax:

AgS AgS - 0.1119 Hs  (8.6.3)
B

Subtraction of the reference 9ouguer anomaly AgsB from the Bouguer anomaly
in (8.5.1) and (8.5.2) gives, respectively, the residual Bouguer anomaly (8.6.4)
and terrain corrected residual refined Bouguer anomaly (8.6.5) (see equation
(3.3.13) for a fuller understanding of equation (8.6.5)):

Agr (ags  - 0.1119 11) - (AgS - 0.1119 Hs ) (8.6.4)

(Agr + tcs) (Igs - 0.1119 H + tc) - (AgS _ 0.1119 Hs) (8.6.5)

'he last two equations can also be written as

Agr' Ags  _ gS 0.1119 (H - Hs ) (8.6.6)

(Agr + tes) Ags _ AgS _ 0.1119 (H - Hs) + tc (8.6.7)

The last two equations state that the original anomalies Ag s are de-trended (1)
in the long wavelength, by subtracting free-air anomalies Ag s generated from
spherical harmonic expansion; and (2) in the short wavelength, by doing
"Bouguer reduction" not with respect to the geoid but with respect to the
higher order but still smooth surface Hs from spherical harmonics.

8.7 Actual Predictions of 5'x5' Mean Anomalies

In accordance with the previous discussions we took the following steps to
predict 5'x5' mean anomalies, for use in our anomaly upward continuation
procedures. The starting anomaly data were the point surface free-air
jinomalies (look ahead to Figure 12 for point location), resulting from the thin
out procedure of Section 8.2. As stated in Section 8.1 the gravity record also
contained the elevation it of the station and the terrain correction to. IHere are
the various steps:

(1) Reference free-air anomalies lts - (8.6.1) were generated on a 0:25x0.25 grid
using the RapI)-180 (Rapp, 1981) potential coefficients with Nmax:l 8 O. A con
tour map of this data is shown in Figuire 8 with a contour interval of 5 mgals.
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Reference elevations ls (8.6.2) were generated on a (.25xr.25 grid usiri
,ographic coefficients available at OSU (tape GS140, file 15) with N1 axzil8O. .A

itour map of this data is shown in Figure 9 with a contour interval of 50
Lers.

Reference Bouguer anomaly values 4gsg (8.6.3) were generated on a
5x0.25 grid from the ags and Hs of steps (1) and (2). This data is contoured
Figure 10 with a contour interval of 5 mgals. In our procedures we could

o generate Ags B directly in one step because we had combined the two
•ies in (8.6.1) and (8.6.2) to produce a Bouguer anomaly series to degree 180,
.h its own Bouguer anomaly spherical harmonic coefficients.

Refined Bouguer anomaliesg (8.5.2) were computed at the irregularly
tributed data points using ags, H and tc given on the gravity records. The
S value of the original irregularly distributed Ag s was 26 rgals. The HMS
Lue of the refined Bouguer anomalies Ag B with the mean removed was higher,
mgals, because although &g was smooth it had significant long wave trend.

Terrain corrected residual refined Bouguer anomalies Ag r' + tcs (8.6.5) were
reputed at the irregular data points by first interpolating the 0:25x0.25 grid

AgS B from step (3) to obtain the reference Bouguer anomaly at the data
int, then subtracting this reference value from the refined Bouguer anomaly
step (4).The RMS value of the irregularly distributed anomalies (Agr + tc s )

Ls a smooth and centered 15 mgal.

5'x5' mean values of terrain corrected residual refined Bouguer anomalie.
,6.5) were predicted from the data of step (5) using the "collocation from the
)sest 10 points" procedure described in Section 8.3. To repeat, a 2x2
bdivision of the 5'x5' block was used. The covariance tailoring procedure
;ed is described in Section 8.4. A contour map of the predicted 5'x5' mean
sidual refined Bouguer anomalies is shown in Figure 11, with a contour
terval of 5 mgals. Note that this de-trended anomaly surface is much
ioother and, therefore, much more reasonable to interpolate than the trended . -

iginal Ags surface (look ahead to Figure 14). The point location of the
regularly distributed data from which 5'x5' predictions were made, as well as
e formal standard errors of predicion coming out of the collocation "" -

•ocedure, are shown in Figure 12. The collocation error estimates shown are 4

least correct on a relative basis, but also their absolute values are expected
be meaningful because of the use of an empirically tailored covariance

nction (Schwarz and Lachapelle, 1980, p. 33).

A "back solution" could now be made starting from the predicted 5'x5'
.an values of step (6). 5'x5' grid point values of &gSB (8.6.3) were first
terpolated at the centers of the 5'x5' mean blocks of step (6) using the
25x(.25 grid of AgS B values from step (3). These interpolated values were
en added to the values in (8.6.5) from step (6) to produce 5'x5' mean values

refin-ed Bougue-r anomalies AgB (8.5.2), contoured in Fjigure 13 with a contour
terval of 5 regals. The difference between the Bouguer anomalies in Figures
, (from this step) and 11 (from step (6)) is the presence of long wave
)uguer anomaly trend in Figure 13.

To test the significance of de-trending at low frequencies we repeated the
e(tioti . ~of the quantity shown in Figure 13, this time using the simple__data

u ra.;e, is refert'rice value, instead of the "Bouguer anomaly to 180". Tht
ivarcarce function of step (6) was accordingly scaled to reflect the variance
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D
le 6. Statistics of Upward Continued Terrain Correction, (tc)Ho

Altitude
of Upward

Continuation (H,) Mean Std. Dev. RMS

28.5 km 0.38 mgal t0.61 mgal 0.71 mgal

8.5 0.52 ±0.65 0.82

3.5 0.70 ±0.66 0.94

0.0 0.72 ±1.16 1.32

relatively fast decrease of standard deviation from ±1.16 mgals (H 0zO km)
±0.66 mgals (Ho=3.5 kin), illustrates that tc1 has energy in the very high

quency range, and this energy gets lost by attennuation at a very short
ward continuation distance Ho.

As stated in Section 8.7, the terrain correction has a very short correlation
gth, but it also contains a weak long wavelength signal. This long
velength signal attenuates rather slowly with altitude, and shows up in Table
is some significant effect (RMS 0.71 regal) even at 28.5 km altitude.

.2 Direct vs. Indirect Upward Continuation Terms

To analyze further the numerical differences between the direct and
firect upward continuation methods, let us first review what we did in the
lirect method. First we performed the following split of the surface free-air
.)malies:

g agr + AgS + jgt (9.2.4)

ere AgN is the spherical harmonic contribution, Agt is the influence
-itributed by topographic masses, and &gr is the residual anomaly. Then to
th sides of (9.2.4) we added the terrain correction tc s of the reference
)ography f1s (for Hs we used a topography to spherical harmonic expansion

A g t cS! (Agr tcs) + AgS + Agt (9.2.5)
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into the causes of the numerical differences between the direct and indirect
methods.

For visualization Figure 15a shows the 60-point terrestrial anomaly profile
and its upward continued version at altitude Ho-28.5 km. Correspondingly the
Rapp-180 anomaly profile at the ground level and at altitude 28.5 km are shown
in Figure 15b.

9.2 Other Studies

This section presents other studies that we conducted using the data in
New Mexico. The objective is to give more information on the numerical aspects
of various procedures related to upward continuation of surface free-air
anomalies.

9.2.1 Formally Upward Continued Terrain Correction

For the direct method we had the terrain-uncorrected version:

(Ag) 0  Uags} HQ f f dxdy (9.2

A 0

and the terrain-corrected version:

D Ha f r (Ags + tc)(Ags + tc)Ho UP(Ags + tc} 2 - °  D o dxdy (9.2.2)
27T A 

0o

The numerical difference between these two versions of the direct method is:

D D D
(Ags + tc)H1  - (&gsHo - (tc,)Ho , (9.2.3)

that is, the upward continued terrain correction. The subscript "1" is used in
(9.2.3) to indicate that the terrain correction tc1 is not equal to the true
terrain correction but is rather a terrain correction that contains errors
(-aused by the errors in the individual predicted quantities Ags and (Ags + tc).
In other words tc, formed as the differences between predicted Ag, and
(Ags + tc), can be called a "predicted" terrain correction. A comparison of tc,
with the rigorously computed tc has already been given in Section 8.7. For
the upward continued tcl, i.e. (tc)DHO we found the statistics shown in Table
6. The statistics were found for various upward continuation distances HO,
using the 60-point upward continuation profile described in the previous
section and 5'x5' tc, data in the 7"x9" New Mexico test area.
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9. Numerical Investigations

9.1 Comparison of Direct and Indirect Upward Continuation Results

We applied the indirect and direct upward continuation methods described
in Section 3.3 to our 7"x9" study area in New Mexico. Figure 7 on page 52
shows the topographic features in the area. Upward continuations were done
for a 60-point profile running east-west from longitude 253' to 258'. Upward
continuation distances used were H0 28.5, 8.5, and 3.5 km. These rather odd
values of He resulted from considering the data to be at a mean elevation of
1.5 km and the uplifted profiles to be at 30, 10 and 5 km elevation. The 60
upward continuatuation points were located at the centers of the 5'x5' mean
data blocks directly beneath the profile. Although 60 points were used, it was
sufficient to present results only for every 6 th point giving 11 presentation
points.

The entire 84x108 grid of 5'x5' mean anomaly data (Section 8.7) atid 5'x5'
mean elevation data (Section 8.1) covering the 7"x9" area were used in upward
continuations. The types of anomalies used were the terrain corrected residual
refined Bouguer anomalies (Agr+tcs) for the indirect method, and the surface
anomalies Ag s and terrain-corrected surface anomalies (AgS + tc) for the direct
method. The detailed 1km x 1km point elevation data (Section 8.1) were used
near the computation points for the prism integration of the attraction of
topographic masses needed in the indirect method. Also for the purpose of the
indirect method, the Rapp-180 potential coefficients and a set of degree 180
spherical harmonic coefficients for the topography (Section 8.6) were used to
generate reference values of gravity anomalies and topography. The opera-
tional programs used in the numerical investigations are described in
Section 7.

Tables 3 to 5 give the results of the indirect and direct upward continu-
ations for the 11 presentation points, for Ho=28.5, 8.5, and 3.5 km. Columns 1
to 3 of the tables give the three components of the indirect method, namely (1)
anomaly contribution from the medium wavlength part of terrestrial data, (2)
anomaly contribution from the long wavelength spherical harmonic field, and (3)
anomaly contribution from shallow topographic masses. Column 4 gives the
total anomaly (Ag s + tc 5 ) from the indirect method (see page 20 for the
rationale behind the use of tcs).

The results from the indirect method were compared with those from the
direct method, with differences shown in columns 5 and 6 of Tables 3 to 5.
Column 5 shows that the direct method using the surface anomalies alone (AgH)
produces a profile that is systematically too low compared with the expectedly
more rigorous profile of the indirect method. The biases have mean values of
0.64 mgal (H,=28.5 kin), 0.54 mgal (He:8.5 kin), and 0.71 mgal (Ho=3.5 kin).
Column 6 shows that the use of terrain-corrected surface anomalies (Ag 8 +tc) in
the direct method improves the bias of column 5 down to 0.03 mgal (Ho=28.5
kin), 0.11 regal (H 0 =8.5 kin), and 0.06 regal (Ho=3.5 kin). The standard deviation
of the differences of columns 5 and 6 (direct method) with column 4 (indirect
method) also improves slightly with the use of (Ags+tc) instead of Ag s in the
direct upward continuations. In the next section we will make further studies
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found by Forsberg, 1984, p. 82). A theoretically better alternative would have
been to take the Faye anomalies of step (8) and subtract rigorously computed
tc values using Forsberg's (Section 7) program, but this alternative would be
prohibitively expensive at the present time. A possible way out of this
expense would be the development of FFT techniques to compute tc (Sideris,
1984).

The "predicted" tc of step (9) was brought to light as follows:

tc (predicted) (Ags + tC)STEP(8) -
6gsSTEP(9) (8.7.1)

Values of tc(predicted) were taken in the l'xl" area from latitude 32' and 33'
and longitude 254" to 255', and these values compared with rigorously
computed tc from Forsberg's program. We found the following statistics using
a 6x6 grid of comparison points (units: mgals):

Difference Actual Value

Statistics tc(predicted) - tc(rigorous) tc(rigorous)

Mean -1.18 2.68

Std. Dev. *2.69 *2.95

RMS 2.06 3.99

Maximum Absolute Value 6.06 14.38

On average, one can say from the above table that 50% of the true
tc-information has been recovered in the prediction. Inspection of the actual
differences which are not given here reveals that the general shape of the
tc-function can be reasonably predicted, but that a reasonable prediction of
detailed features basically relies on the chance that there is a data point close
to the prediction point. One could expect that for a reasonable prediction of
detailed features of tc the data spacing would have to be much less than the
correlation length of tc in the area, say, one-third the correlation length; this
is indicated from the discussions of Sunkel (1981, pp. 88-93) who gives general
data density requirements as a function of the correlation length of the
function being interpolated.
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of the "mean-value centered" data, which was 2400 mgal 2 . For comparison, let
us distinguish two prediction procedures as follows:

Method A: Bouguer anomaly to 180 used as a reference surface. Variance of
data used in predictions: 225 mgal2 .

Method B: Simple average used as a reference value. Variance of data used in
predictions: 2400 mgal 2 .

We observed the following:
S

(a) In areas with good data coverage (i.e., areas with standard error of
pred-ction less than or equal to 5 mgals as shown in Figure 12), the
predicted values from Methods A and B generally agreed to better than 0.2
mgal.

(b) In areas with poor data coverage (standard error greater than or
equal to 10 in Figure 12), differences of 7 mgals were observed between S
Methods A and B. In these areas the used reference value "anchors" the
predicted value, in the sense that the predicted value tends to approach
the *.Pference value.

(c) The most significant difference between Methods A and B, affecting
both areas of good and of poor data coverage, was the scaling of the
formal error estimates. Error estimates from Method B were more
pessimistic than Method A, by the ratio (2400/225)%.

From the above we conclude that the advantage in using a higher order trend
surface than the simple-average surface lies in a better scaling of the error
estimates; the predicted values themselves are not critically affected by the
choice of trend surface for areas of reasonable data coverage.

(8) To the 5'x5' refined Bouguer anomalies (8.5.2) from step (7) we added
0.1119 H, where the elevations H were the 5'x5' mean elevations mentioned at
the end of Section 8.1. In accordance with (8.5.2), the results would be 5'x5'
mean values of terrain corrected (i.e. Faye) surface anomalies (Ags + tc),
contoured in Figure 14 with a contour interval of 5 mgals. Throughout our
procedures we of course assumed that 5'x5' mean values of free-air anomalies
referred to 5'x5' mean elevations, and this assumption is justified because of
the strong local correlation between point free-air anomalies and elevations; for
a further discussion of correspondence between mean free-air anomalies and
mean elevations, see Sunkel, 1981, p. 5.

(9) It was also of interest to our studies to predict 5'x5' mean anomalies
without having first applied the terrain corrections to the irregular data ags
in step (4). In other words, we essentially repeated all the de-trending,
prediction, and back solution steps working with simple Bouguer anomalies
given by (8.5.2). The end results analogous to those of step (8) were 5'x5'
mean valiues of jterrairn uncorrected) surface free-air anomalies Ag".

S

REMARK: Note that implicitly in step (9) we carried the quantity "-tc" (present
in the original ags data) through the prediction procedure. Therefore,
implicitly we attempted to predict 5'x5' mean values of "-tc" which would have
to be very inaccurate because of the very short correlation length associated
with the terrain correction (correlation lengths on the order of only 2!5 were
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Then we indirectly upward continued (Ags + tcs ) P follows:

I (Ae D S t(Ags + tcs)Ho (Agr + tcs)DH° + AgHo + Agto , (9.2.6)

that is, the indirectly upward continued value is the sum of three separately
upward continued terms: the first term is a direct upward continuation by the
Poisson integral; the second term is an upward continuation in the spherical
frequency domain; and the third term is an upward continuation by the prism
integration of the gravitational influence of topographic masses.

In the comparison stage (Tables 3, 4, and 5) we get a good mean value
agreement between the set of results from the indirect method and those from
the direct method that used the terrain-corrected surface anomalies (Ags + tc).
The latter set of results could be conceptually obtained by adding tc to both
sides of (9.2.4) then applying direct upward continuation:

(Ags + t)D, (Ag'r + tcDD + 1hgt)D (9.2.7)

tH Hc)H+ (AgS) 1 1 0  Ho1

Therefore, to explain the numerical differences shown in Tables 3 to 5 between
(Ags + tcs)IHo and (Ags + tc)DHo we need to examine the differences between
the corresponding terms .on the right hand side of equations (9.2.6) and
(9.2.7).

A. Comparison of First Terms

The difference &I between the two terms is:

A, : (agr + tc)D Ag + tcs) Do (tc - tcs) D (9.2.8)

As stated in (9.2.3) we were able to obtain some sort of predicted tc denoted
by tc 1 . On the other hand, the determination of the quantity of tc5 was
problematic in terms of computer time requirements; the set-up of Forsberg's
program that we were using (Section 7) required 0.2 cpu sec. per point on our
AMDAHL 470 V/6 system, and we needed at least 84x108=9072 values of tcs .

Therefore, we did not specifically perform an evaluation of Al = (tc-tcS)DHo.
However, the .umerical comparison of the third terms below show that on
average AI is ianceled out by the difference (denoted by AIiI) between the
third terms (see equation (9.2.20)). In any case, we would expect (tc-tcs)DHo
to be small, because the long wavelength quantity tcs will tend to cancel the
long wavelengths of tc (tc-tcS); aF we have seen in Table 6 only these long
wavelengths (and not the very short ones) would have had the chance to filter
through the upward continued value (tc-tcs)Dito.
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B. Comparison of Second Terms

The second term of (9.2.7), which is (agS)DI1 o, uses the spherical harmonic
series derived Ags arid upward continues this using the Poisson integral. The
second term in (9.2.6) conceptually uses the same quantity AgS but upward
continues it using the spherical harmonic series, upward continuation being
effected by multiplying the spectrum of AgS by the factor (R/r)rl+2. To
compare these terms we took the Rapp-180 field used in Section 9.1 and, with
program F388 of Section 7, generated 5'x5' center-point values of AgS on the
equatorial sphere level. These values, taken as 5'x5' mean values, covered the
7"x9" test area in New Mexico. We then upward continued the 5'x5' mean
values by Poisson integration (program F499, Section 7):

o f f " dxdy (9.2.9)
Do

and compared the results with the rigorously upward continued values
(program F388, Section 7):

D _kM 180 n+2 n(Cn cos wX
(A-1 0  .2 (n-I) (CmCsM

n= '2  a= 0

± Snm sir 1X) Pnm (sin 4) (9.2.10)

The implementation of equation (9.2.9) was done in two versions. In the
first version (called center-point kernel version) the contribution of a 5'x5' AgS
to the upward continued value was obtained by multiplying AgS by the step
function evaluation of the integral kernel at the center point of the 5'x5' block.
In the second version (called integrated kernel version) the 5'x5' Ags was
multiplied by the rigorously integrated value of the kernel inside the area
covered by the 5'x5' block (see Rapp, 1966, for specific equations). The
statistics of the differences all = (Ags)Do - AgSij o are shown in Table 7. The

statistics were obtained for the same eleven presentation points of the profile
used in Section 9.1. We observe that the integrated kernel implementation of
e(quation (9.2.9) can keep the error of (Ags)D Ho under 1% of true value AgSJ,.
This is true down to the lowest upward continuation altitude tested which was
11,:1 ki. The center-point kernel implementation, on the other hand, can keep
the relative error under 1% down to 10 kin, but below 10 km the use of the
integrlated form is necessary since the tests show that the errors of the
c,'nter-point form reach 15% at 5 km and blow up at 1 km.

To conclude, the second terrm AgSHo of equation 9.2.6 and the secondt i m
Ag5 )1)1l, ,,f equation 9.2.7 are in close agreement, arid therefore t.'cir

differenrce a1 1[ is not a major contributing factor to the differences found in
7- : t i f9.I (Tables 3 to 5) between the direct method and the indirect method
"f Upward continuation. However, in spite of the small differences found
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between AgHo and (Ags)DHo, the rigorous quantity AgsHo is still advisable to
use (in an indirect method setting) because its evaluation does not increase the
computational burden very much and it has the advantage that in principle it
uses continuous and global data whereas (Ags)D H (which is the implicit
evaluation in the direct method) uses a step function approximation of the
terrestrial data and a limitation of integration to within a finite data cap.

Table 7. Statistics of the Absolute Error Incurred in Using the Poisson
Integral for the Upward Continuation of the Rapp-180 Anomaly Field.
5'x5' Center Point Rapp-180 Anomalies Used as Data, Covering the
7"x9' New Mexico Test Area. Units: mgals.

Altitude of True Ags Error Error
Upward =Ag8 (Center Point (Integrated

Continuation Kernel Used) Kernel Used)

He=30 km Mean= 7.38 0.05 0.03

S.D.=16.17 *0.08 ±0.07

= 9.43 0.09 0.08

10 km 9.02 0.05 0.08

±9.83 *0.06 ±0.13

13.01 0.08 0.15

5 km 9.52 1.31 0.10

±11.05 ±1.63 ±0.13

14.20 2.03 0.16

1 km 9.94 107.46 0.03

±12.15 1132.98 ±0.03

15.27 166.20 0.04

DI

C. Comparison of Third Terms

Finally let us now turn to a comparison of the third terms, i.e. AgtHo in
(9.2.6) and (Agt)Dqo in (9.2.7). The quantity AgtH 0 is the indirect, and
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(Agt)D Ho the direct, upward continued value of Agt. In turn Agt is given by
equation (8.7):

Agt 0.1119 (H - Hs) - (tc - tcs ) , (9.2.11)

where in our case the reference elevations Hs and terrain corrections tc s refer
to a 180-expansion of the topography. We have the indirect quantity:

t
AgIto  found by integration of the attractions caused at the

computation point by residual topographic masses sub-
divided into prism integration elements (see
Section 7 for operational program used);

and the direct quantity:

(&gt) D = Ha f f 0.1119 (H - Hs ) - (tc - tcs ) ddy (9.2.13)27T)H 3 °xy(..3

A 
D0

As we indicated under equation (9.2.8) we did not evaluate tc s because of ._

computer time limitations. Therefore, we also did not evaluate (9.2.13) where
tc s appears. However, tests of interest could still be conducted by dropping
some terms in (9.2.13); we used two versions:

27TD

A 0

with Agt Agt - tcs  0.1119 (H - Hs ) - tc; (9.2.14b)

and

Ha ! *f f AJ dxdy (9.2. 15a)A 
Do

with agt Agt + (tc - tc s ) 0.1119 (H - Hs ) (9.2.15b)

Using our 5'x5' data in New Mexico, various upward continuation distances
(Ho=28.5, 8.5, 3.5 kin), and the eleven presentation points of Section 9.1, we
compared (9.2.14) and (9.2.15) against (9.2.12) and obtained the statistics shown
in Table 8. The statistics are given for the results of (9.2.12) and for the
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differences: [equation (9.2.14) or (9.2.15)] minus (result of (9.2.12)]. We should
note that in view of the results of Table 7 we used the integrated kernel
evaluation for HO 3.5 kin, and simply used the center point kernel evaluation
for HO 8.5 and H0  28.5 km to implement (9.2.14) and (9.2.15).

Table 8. Statistics of Ag tc o and of the Differences ((Agt 1 )D 0 Ho Agtj1 0 ) and
(Agt) 0 Ho Ag Ho), in mgals. See equations (9.2.14), (9.2.15), and

(9.2.12).

Altitude of (1) (2) (3)
Uadt D- t&)DOA-Upad HO (Ag1)HO - AgO(AiH H

Continuation (9.2.12) (9.2.14)-(9.2.12) (9.2.15)-(9.2.12)

HO=28.5 km Mean=-3.11 -0.63 -0.02

S.D.=±4.74 10.51 10.24

1R1S =5.49 0.80 0.23

8.5 km -3.71 -0.64 0.06

t11.24 20.62 ±0.58

11.34 0.87 0.55

3.5 km -3.39 -1.58 0.08

t15.57 *1.22 *1.04

15.23 1.30 0.99

The small mean differences in Table 8, column 3 imply that numerically:

t t DM(Ag~0 } 2M((Ag 2 ) Ho} 9 (9.2.16)

where M denotes the straight averaging operator, operating on the test point
samples. Therefore, for the difference (let us denote this difference by AI1 1 )
between the third terms (9.2.12) and (9.2.13) we have the approximation:

D t D~ t DM{11 } M(At) - HO)j} M{(Ag Ho-(Ag2 ff)~0  (9.2.17)
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By virtue of (9.2.15b),

M{(Agt)H. - (Agt)o} M{-(t- s)HO (9.2.18)

Combining ((9.2.17) and (9.2.18) we finally have the approximate mean difference

between the third terms (Agt)DHo and AgtHo:

M(AIII} M{(Agt)Do - g M{-(tc - tcs)Ho} (9.2.19)

Combining (9.2.19) and (9.2.8) we have:

M{AIii} 0-M{aI}, or

M{A1 + AII} a 0. (9.2.20)

From the discussions related to Table 7 we also learned that M(AIj} 5 0, and
therefore the mean of the total difference a AI + AIi + AII is small, i.e.,

M{&} = M{A I + &II 
+ l ll } a 0 (9.2.21)

Equation (9.2.21) repeats the results of Tables 3, 4, and 5, namely, that the
mean difference between the indirect method, on the one hand, and the direct
method that uses terrain corrected surface anomalies (Aga + tc), on the other
hand, is small.

9.2.3 Sensitivity of Anomaly Fields to Changes in Upward Continuation
Distance H.

As mentioned in Section 3.3 (A) there is an uncertainty as to what value
of upward continuation distance Ho to use in the Poisson integral. Recall that
Ho is theoretically the vertical distance between the computation point P in
space and the level surface to which the anomaly data are assumed to refer.
The uncertainty in Ho is caused by the fact that the given surface anomaly
data refer to a varying level surface, rather than to a single level surface.
Even in the case when the terrain correction is applied to implement an
approximate data reduction to a level surface, the position of the final
reference level is uncertain (see Section 3.3 (A)). In our final procedures we
simply assume that the reference level coincides with the mean elevation
surface in the area covered by our anomaly data. The error in upward
continuation distance Ho that results from this assumption is expected to be
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related to the deviation of the actual topography from the mean elevations
surface. In this section we give a feeling for the sensitivity of our results to
the choice of value for Ho.

The mean elevation in our New Mexico study area is about 1.5 km. For
sensitivity analysis we compared upward continuation results for the case when
the reference level for the data is assumed to be at the 1.5 km level, and for
the case when this level is assumed to be at the geoid (i.e., the 0 km-level).
The difference between the two cases is, therefore, the use of upward
continuation distances Ho that differ by 1.5 km. We performed our comparisons P
using the eleven presentation points of the profile in Section 9.1. The
statistics of the comparisons, for various values of Ho and various types of
anomaly fields, are shown in Table 9.

Table 9 says, for example, that in the direct method that uses the total
field (ags + tc)DHo, (see (3.3.2)), an uncertainty of 1.5 km in Ho for 1l,=30 km I
directly causes an uncertainty of 0.43 mgal (3.8% of computed value) in the
upward continued anomaly. If data reductions are used, as in the indirect
method, such that only the residual part (Agr + tcS)DHo is used (see (3.3.14)),
the uncertainty reduces to 0.19 mgal (4.2% of computed residual value). Table
9 also shows that the residual topographic field AgtHo (see (3.3.16)) is the part
of the total field that is most sensitive to changes in H0 , the reason being that 3
Agt contains the high frequency part of the field. This last sensitivity does
not introduce any error into the computations, since AgtHo has no problem
associated with defining an "upward continuation distance". Finally, Table 9
also shows that the spherical harmonic (long wavelength) component of the
field is the least sensitive to altitude changes.

9I
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Table 9. Sensitivity of Sample Profile Anomalies to a 1.5 km Change in Upward
Continuation Distance Ho, for Various Values of HO and Various Types
of Anomaly Fields.*

Upward Total Residual Spherical Residual
Continuation Field Field Harmonic Topographic

Distance Field Field
D D st -

(Aga + tc)HO (Aga + tc)HO Ag 0o
s  agHO

(3.3.2) (3.3.14) (3.3.15) (3.3.16)

Ho 30 km 11.32 4.49 9.65 5.49

0.43 0.19 0.24 0.27

3.8% 4.2% 2.5% 4.9%

Ho 10 km 19.92 8.02 13.35 11.34

1.35 0.51 0.37 1.14

6.8% 6.4% 2.8% 10.1%

HO = 5 km 23.70 9.41 14.59 15.23

2.15 0.73 0.41 2.29

9.1% 7.8% 2.8% 15.0%

*Key to entries in table for each box:

(1) FNS value of profile anomalies at height Ho (mgals).

(2) FR1S change in profile anomalies when height Ho is reduced by
1.5 km (regals).

(3) Percentage ratio: (2) (1).
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1.3 Fourier Computations

From the numerical point of view it is very attractive to use frequency
iomain processing. The theoretical equations are summarized in Chapter 2.4.
[ere we will show how the Fourier Transform principle can be utilized in
)ractice to upward continue the gravity anomaly field from one level surface to
mother. It should be stressed here that the Fourier technique requires
?xactly the same assumptions as the flat Earth Poisson's integral. After all
.hese two procedures give the unique solutions to the same Dirichlet problem
or half space - one in spatial the other in frequency domain. Fourier
.echnique is much cheaper in computational stage but requires the special care
n controlling the edge effects. As our balloon experiment shows, these effects
ire negligible far from the edges where the upward continued value was
:omputed.

In practice the evaluation of upward continuation operator is done by
r-ans of digital Fourier transformation defined by (Robinson and Silvia, 1981,
:h. 3.3). (Notice that we define the forward transform with a + sign in the
exponent which is a common practice when working with spatial signals).

Nx-1 N -1 n_27T n, + nyft (9.3.1a) a

nx=O fly=O

xnx ny) - Nm)n.-
f(nx, ny) Nmx my) e. i2L x

mx=O my=O

nx, mx E{O, 1, .... Nx-i}

ny, my tfO, 1, Ny-}-

If we choose Nx, Ny to be powers of 2 we can use the Fast Fourier Transform
algorithm to evaluate (9.3.1).

The integers nx, ny, mx, my are defined by:

x nx AX y ny Ay

k mx fx my Afy (9.3.2)

Afx : /(Nx AX) Afy 1/(Ny y.-

8.. .-



where the spatial increments are related to angular increments by

Ax R cos * AX (E-W direction)
(9.3.3)

Ay R A* (N-S direction)

Here the regular spatial grid intervals Ax and Ay are computed using the mean
latitude *=f=32.5" of the data location. The original data are considered here p
as the discrete point-measurements of the gravity anomaly field of the surface
of the earth using uniform angular spacing AO=AX=5'. This uniform spacing on
the sphere under transformation (9.3.3) becomes strictly speaking non-uniform
on the plane due to meridian convergence. Using a fixed value of 0 in (9.3.3)
introduces some distortions to the original spacial distributions of the data.
Our study indicates that this distortion produces an essentially negligible
effect on the results due to the use of rather fine 5'x5' grid defined on a
relatively small portion of the sphere (7"x9 ° block). In other words the flat
earth approximation being valid for the original Poisson space processing
data is also valid for its frequency implementation, at least for small regions as
discussed in this report.

I

Summary of frequency domain digital upward continuation procedures:

I. compute Ax and Ay; (9.3.3)

2. transform the data to the frequency domain as indicated by (2.4.5) using
(9.3. 1a);

3. multiply the transformed data in the frequency domain by the transfer
function A (2.4.6)

4. invert the result back to space domain as indicated by (2.4.7) using
(9.3. 1b).

The above procedure was applied to our 7"x9' New Mexico study area, to
upward continue the entire 84x109 grid of 5'x5' mean Faye anomalies (see
Sectior 9.7). The uplifted grid for an upward continuation distance of 28.5 km
is contoured in Fig4ure 16, with a contour interval of 5 mgals. This figure
should be compared with Figure 17 in which the corresponding grid from the
Rapp-180 field is contoured. The long wave agreement between Figures 16 and
17 is evident, with Figure 16 expectedly showing more detail because of the
use of high frequency terrestrial data.

For the Fourier upward continuation we used only a simplified procedure
including no windowing of the data or any other regularization routine in
frequency domain (i.e., no specialized filters used). We found the results
produced by this simplified procedure in satisfactory agreement with the space
domain processing of original Ag+tc field by means of Poisson's integral. The
difference in results on the order of 0.15 mgal at 30 km flight altitude can b,'
associated with the differences in numerical implementation. We employed this
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Idur'e Using the Fast Fourier Trzisform ruie Ifo t c'ii
p. 12). The technique wa-s tested usinig the rwi!_iriall tferr'ain w''t

air anomaly field. The results Were corn pared aiw: r V -W t .pr!Ii 2* W
eslsof the Poisson's integral operating ori the ca:ww fwld.

i he INIS d iffere nce over the test profile b1 w1 n . w
mgal for the u pward continuation diistance, of 28.5 km:i. FVo 1 I

nuation distance of 8.5 km the RMS difference Alorig L11- c'ti n I
1)32 mgal.

Phe magnitude, of the above d if fere nces i s in fact, on the o)r decr f
rences between the indirect, and direct space dianiproedures,- ir,'ad y
issed. This indicates that the Fourier method canr prove to ho cnpni v
the, one-step space domain processing ( direc t methd) ith rwi et

"ayof the rusuits. It can be recomminended for fa st, p rocess ii, 1i ; -F ip
ties of gridded data to produce the itmage of the fielId (irt a gridl- fuirmi)
ty level surface above the data. su -face. To get th values at. any loc iti( n

de the grid point the interpolation has to be performe-d w hichI is a1 val1id
ne provided the original data were gridded in a( accordance2 with t he
ling theorem (Robinson and NI.T. Silvia, 1981, ch. 2.6).

)n the theoretical side it provides ain elegant Unriiformo tr(:itiiwr0. )I* all
iencies present ii'. the original signal. On the practicali side, it- provides n
numnerical proce(_dure toc trainsform the data nipwair( from onelve trai
'-iother. .-\a far as accuracy is concerned the el o ffects (imb rein in
icr tec hn iqutes) should be treated with care by appro)priate wiude)wing~
rir" or, (if possible) the reg-ion with da.0a should cover eniough g rounds,
)lrid in g the point of interest.



pflications to Balloon Gravity Project

,ic theory outlined in this report was applied to the Balloon Gravity
-L coordinated by the Air Force Geophysics Laboratory, Bed fi d,
.:husetts. The experiment took place in New Mexico and was designedto 
he theory, procedures and instruments used for both the measurements
-it prediction of gravity in space.

ne comparisons between the observed and predicted gravity will give in
into the accuracy and performance of the theories and techniques of
.y recovery in space which are in the operational stage today. It is :Ilso

of the accuracy and performance of the balloon-borne instruments ind
iques that are used today for the measurements of the external gravity

I this section some technicalities of the actual gravity prediction
dure used for the Balloon Project are given. The method we chose for
nal application is the indirect method described in Section 3.3. To repeat
y, the rationale behind this method is to extract the high frequency
ion in the original surface gravity. Here by high frequency variation we
'stand the topographic effects (irregular geometry of the terrain plus tc
tion). As we have seen in the previous chapters this high frequency

)mrint of the gravity signal cannot be conceptually nor practically
rte t downward to the Poisson's spherical geometry so w, did not try to
Ais. Instead we immediately upward continued this high frequency
rnent (right from the original surface where it was defined) uip to the
ri's attitude using partially the ideas of equivalent source method as
riented in the prism integration of topographic effects.

ftt'r the removal of this short-wavelength variation, the remaining regular
n ,)f the gravity field was converted downward (formally) to the Poisson's
ic'il ge metry (see Section 3.3). Then the long-wavelength or global
)n (,f this signal is upward continued in the frequency domain (using

il ha r roini's) and the mid-frequency portion is upward continued hy
ig_ the usual l)iri,:hlet problem for half space (in planar approximation) by

• P" Pi ,n's integral.

I> A O ;Ip ;Oieri we. use. the L .F '
"  .:ohIr,'it:o ion of the

M's irntegral prtcedure as described in (Rapp, Februlary 1966). The
i, w;,.s ruroi ising the gridded mid-frequency portion of the gravity
ill. ;i)n1 is ,iis-isse.d in Section 3.3.

)n ,f the Pihloon Tracking D;ai.: for t'pwaird (Cort.inriu:t ioo

, ,ull,,,omo tra kirig daoiL were sent on the nrttt ,, L;tcd .1 %liy
lii'' tu rll Is [ :I ; IK R:i u:it r T' ra .RirlL tji. T t, tap"e C, nt u' wd 1

fil's, with the fla it portiri of the exoP r'merit. c ained ;.s p tf ,)f
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The positions of the balloon during the experiment were provided in the
form of geodetic coordinates (4, X, h) with respect to the WGS72 ellipsoid (see
Table 10).

The original tape contained 462,200 positions. The original records were ,.
parameterized by the time of measurements. On Figure 18 we show the spatial
location of the balloon's trajectory. The average spacing of original tracking
data for the float portion of the experiment was approximately 0.6 m on the
ground. At the first step we reduced the number of data-points spatially by
choosing only the clusters of 10 original records spaced every 30" angular
distance apart from each other. During this step the false data records were
rejected and the remaining set containing 3160 records was checked for
blunders. The false data records on the original tape occurred at the end of
each file due to technical reasons.

Since we were primarily interested in the flight altitude portion of the •
experiment (29-30 km altitude) it was sufficient to select only 1 data point
every 2' spacing (in angular distance) along the track. The 2' spacing is
sufficient for all interpolation purposes at flight elevation because the
anomalous gravity field is already very smooth at that altitude (see Figure 5Ia,
for example). The resultant data-set contained 31 values equally spaced in 2'
intervals covering the flight portion of the balloon's trajectory, that is the .
portion of the original data tape (file 33) which falls in the time interval
<57445.95, 66955.95>. The time is UTC time in seconds. In the computational
stage of this project we used the time only as a convenient parameter to locate .. .

the data on tape.

10.2 Reference Systems Used in the Balloon Project

In this section we give the summary of reference systems and conversions
used at the stage of data preparation for the balloon project. The geodetic
coordinates (4, X, h) of the balloon positions provided on balloon tape were
given with respect to WGS72. The terrestrial gravity anomaly field that we .
used in this project was given in the GRS67 system. The spherical harmonic
expansion of the global gravity field up to degree 180 was assumed to refer to
GRS80 (Rapp, 1981) (referred to as Rapp 180 field). The ellipsoid parameters
for the reference systems used are given in Table 10.

Ellipsoid a [m] 1/f

WGS72 6378135 298.26

GRS67 6378160 298.2471674273

GRS80 6378137 298.257222101

Table 10. Parameters of the reference ellipsoids involved in the data
preparation for the balloon project.
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Figure 18. Plan View and Elevation View of the New Mexico Balloon-Borne
Gravity Flights.
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Now we will summarize the conversions used for upward continuation of
gravity anomalies. Since the original gravity anomaly field that we used in our
project refers to GRS67 ellipsoid we decided to convert the given geometric
heights hWGS72 that refer to the WGS72 ellipsoid to the normal heights H*GRS67
that refer to the GRS67 ellipsoid.

geop

spherop

+p

- -eoid

ellipsoid

Figure 19. The Spatial Relutionship Between Selected Gravitnetric Quantities V

II . %

From Fifrure 19 we have the relation:

HGRS67 11 + (N GRS67 (021

where is the geop-spherop separation or height anomaly at balloon's
altitude.

instead of the difference (N- )GRS67 we will actually use (N-.-)GRS80 in the
approximate relation: I

1 1RS7 H +(N -(10.2.2,
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For the orthometric height 11 appearing in (10.2.2) we can write the relation
(see Figure 19):

H h -N (10.2.3)GRS80 GRS80

To get hGRS80 from a given hWGS72 we implement the well known formulas of
geometric geodesy (Rapp, 1984, Geometric Geodesy Notes, Vol. 1, pp. 121-122) in
the following procedure

input: hWGS72'

compute: ZWGS72 l(N( - e2) + h) sin * using WGS72

constants

convert: ZGRS80 ZWG 7 2 + Az a ZWGS72 (10.2.4)

here we set the origin shift AZ to zero so that
the ellipsoid WGS72 and GRS8O have a common center

compute: h 8 N + e2 N using GRS80 constantsGS0 sin*

where N = a//l-e 2sin2* , e2  2f - f 2 .

In practice, instead of converting each data point separately using the
above formulas, we applied a single common constant Ah z -1.66 m to each
height given in the WGS72 system:

h h Ah (10.2.5)Gfls80 WCS72

where the particular value of Ah hGRS80_hWGS72 -1.66 m has been
evaluated by the sequence of equations (10.2.4) (starting from a nominal
hWGS72 and computing the equivalent hGR80) using the mean latitude of the
balloon's trajectory (32.40') and the mean altitude of the flight section of the
experiment (30 kin).

s'ing (10.2.3) and (10.2.5) we can write (10.2.2) in the final form:

1IGRS67 - hs72 h) N 7GRSS0 (10.2.6)

In the actual implementation of equation (10.2.6) we used the Rapp 180 field
(based on the spherical harmonic expansion of gravity potential up to degree
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and order 180) to generate the required values of height anomalies CGRS80.
Due to the smoothness of the height anomaly field at flight altitude a single
constant mean value of GRS80 = -23 m (20.26 m) was used in formula (10.2.6).

I
The normal heights (10.2.6) were subsequently used in the FORTRAN

subroutine for Normal Field Computations (Rapp, 1966) (see also Section 2.6) to
generate normal gravity at the exact balloon positions. The routine was run
using GRS67 constants.

10.3 Upward Continuation Results

The upward continuation procedure of gravity anomaly described in this
report was actually applied only to the 31 points selected in Section 10.1. The
results are shown in Table 11. The position of each point is defined in
columns 1 to 4: (1) time tag in the tracking record; (2) latitude; (3) longitude;
and (4) height above the WGS72 ellipsoid. Columns 5 to 7 give the upward
continued anomaly contribution from: (5) residual defined Bouguer anomalies;
(6) spherical harmonic anomalies; and (7) topographic anomalies. Columns 5, 6,
7 were summed to form column 8, which is the total upward continued anomaly
from the indirect method of upward continuation. Column 9 gives the normal
gravity to be added to the upward continued anomaly to produce the first
model for measured gravity at the space point. Columns (10) and (11) give the
upward continued anomalies resulting from the direct method of upward
continuation of surface anomalies using terrain-uncorrected and terrain-
corrected surface anomalies, respectively. Columns (12) and (13) give the
errors of columns (10) and (11) relative to the expectedly more rigorous
indirect method (column 8) of upward continuation. The mean error and
standard deviation of errors are as follows:

Error of Direct Method Error of Direct Method

without use of tc (col. 12) with use of tc (col. 13)

mean error -0.51 mgal 0.14 mgal

s.d. error ±0.35 mgal ±0.18 mgal

In agreement with earlier results, we see an improvement with the use of
terrain correction in the direct method.

10.4 Interpolation of the Results at Altitude

In the last step the upward continued values were interpolated at all L
original data-records on the balloon tape that fell in the time interval covering
the flight portion of the experiment (190,201 data-points). Only results from
the indirect upward continuation method were used (Table 11, Col. 8.). The
actual interpolation was done using the one-dimensional cubic spline routine
(subroutines SPLINE and SEVAL, Forsythe et al., 1977) applied to the flight
sequence which has been parameterized with longitude only.
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To check the internal accuracy of this interpolation process we removed
every other record out from the 31 "master" points and treated the remaining
16 points as the new knots in the spline interpolation procedure. In this way
we interpolated values at the removed knots and compared with the "true"
values obtained directly from the upward continuation process. The
differences were on the order of 0.01 mgal in gravity anomaly.

For the normal gravity computation the chosen 31 grid points were not .-

dense enough to properly recover the normal gravity at flight altitude, mostly
due to the vertical gradient of normal gravity. It was evident especially at
both ends of the flight portion of the experiment where the balloon changes
altitude very rapidly. Therefore we decided not to interpolate normal gravity
but to compute it rigorously at every observational point (see Section 2.6).

10.5 Propagation of Positional Errors

On the original balloon tape the positional accuracy of the balloon in all
three directions were provided with each data-record. The average accuracy
of the 31 points selected for actual upward continuation was on the order of
2 m in all x, y and z coordinates.

I.

Considering that the largest horizontal gradient of the actual computed
anomalous gravity field along the flight portion of the balloon trajectory is
about 0.0006 mgal/m (this is the actual gradient of the computed results for
the balloon project), we assess the maximal error due to the 2 m uncertainty
in the horizontal position of the balloon to be 0.0012 regal in gravity anomaly
and 0.0011 regal in normal gravity (for normal gravity computation, only the
uncertainty in N-S direction must be considered).

The uncertainties in altitudes will also produce uncertainties in the
computed components of the gravity field. From Table 9 we learn that the
vertical gradient of the actual Ag field at 30 km flight altitude is about 0.0003
mgal/m. Therefore the 2 m error in the balloon vertical position will show up
as the uncertainty of about 0.0006 mgal in the computed ag field. Similarly
the vertical gradient of normal gravity of 0.3086 mgal/m (Rapp 1982, p. 8) will
cause the uncertainty in the computed normal gravity of about 0.6 mgal (due to
the 2 m uncertainty in the altitude).

Also, the error in geoid undulation (more precisely in height anomalies)
used in the data reduction propagates directly to the uncertainties in the
clearance of the balloon above the datum surface. In our project we used the
height anomalies field implied by the set of potential coefficients up to degree
180 computed by (Rapp, Dec. 1981) and referred to as the Rapp 180 field. The
height anomalies were needed in data reduction process to convert the WGS72
geometric heights given as the data to the normal heights in GRS67 (See L..
Section 10.2).

The Rapp-180 field used in the data reduction process gives the
undulations (height anomalies) with the accuracy on the order of ±1 m (Rapp,
Dec. 1981, p. 31). For our actual sub-balloon trace in New Mexico we decided it
is sufficient to represent the Rapp-180 height anomaly field in this area by a .
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constant value of -23 m (*0.26 m) which is the mean height anomaly computed
for the flight portion of the experiment only. We conclude that the usage of
the Rapp-180 undulation field introduces about I m uncertainty into the balloon
vertical position. Using the same vertical gradients stated above we find the
0.0003 mgal error in the computed Ag value and the 0.3 mgal error in the
computed normal gravity.

In conclusion, we notice that the positional errors in the balloon
coordinates and the height anomaly error do not noticeably affect the gravity
anomaly computation, but they have an effect on the computed normal gravity
and on the predicted observed gravity (mainly due to the altitude error).
Therefore, the predicted observed gravity may be contaminated by at least 0.6
mgal uncertainty due to the vertical positional errors.

10.6 Other Sources of Errors

In Section 6 we considered theoretically how the errors present in gravity
data propagate through the upward continuation integration. Here we can try
to use some of the results of Section 6 to give the rough evaluation of errors
that affect the actual procedure.

The main source of the gravity data error probably comes from the
gridding procedure of the gravity material by means of the collocation pre-
diction of the mean 5'x5' values. If we assume that the mean values computed
by the collocation prediction procedure are contaminated by the error function
having error variance of 25 mgal2 (this number is a rough estimate from the
formal errors output by the collocation prediction in the area of the balloon
flight; see Fijre 12, central portion) and the correlation length of about 10
km (this correlation length is unavoidably due to the gaps in the original
gravity data of about this size which cause the adjacent 5'x5' blocks to be
correlated), then we can use Table 2 together with (eq. 6.2.9) to conclude that
at 30 km flight altitude the propagated effect is about 0.9 mgal (in standard
error) with 55 km correlation length. This puts the limit of accuracy on our
entire procedure. This limit is due to the quality of the original gravity data
mainly in spatial distribution and cannot be overcome by refinements in
procedure unless the geometry and quality of original data are improved.

It should be noted here that errors present in the mean anomalies (for
which 25 mgal 2 variance and 10 km correlation length at ground level was our
rough estimate) are due to both: errors in the original gravity point-values
(on input to collocation prediction routine) and errors of interpolation. The
error of interpolation comes from the difference between the true gravity
anomaly and the gravity anomaly model implemented by the subtraction of the
reference field in order to center the original data. Of course where the
original data are very dense the computed mean values are (almost)
uncorrelated and are affected mainly by the point-gravity data error. If this
error in original point-values could be modelled by a weakly correlated noise
having correlation length shorter than 5'x5' blocks (used in prediction) then
this type of data error would tend to cancel during the computation of 5'x5'
means, producing essentially negligible effect at 30 km altitude. If the
point-data field is sparse in some areas then the predicted mean values will be
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ffected by both data error and the interpolation error. In sparse areas the
omputed mean values tend to be correlated with each other and so will be the
nterpolation error. The correlation length of this error is dependent on the
iize of the gaps in the original data - the larger the gaps the wider correlated S
rrors (from this type of analysis comes our rough estimate of 10 km
;orrelation length errors present on output of collocation prediction
)rocedure). As we learn in Section 6 such widely correlated errors do not
kttenuate very fast with altitude. For example, according to our rough
mstimate (see Table 2) at 30 km flight altitude the correlated errors produce
,he effect that c-m be descibed as the distortion function which is 0.9 mgal in
kmplitude and 55 km wide in correlation length. This type of effect can very
,asily be misinterpreted as some sort of systematic error and wrongly
issociated with e.-rors in the modeling of the upward continuation distance (see
3ection 9.2.3) or the data reduction error. We consider this type of error as
Lhe main limitation of accuracy of final results.

Another effect cor.sidered in Section 6 is the representation error due to
Lhe conceptual replacement of the true gravity field by the step function
composed of the flat patches over 5'x5' blocks. At 30 km flight altitude the
rough estimate of this effect in gravity anomaly is only about 0.01 mgal
(standard error).

If we assume that the effects considered here act independently of each
other we can sum th error variances of each component to get the rough .
estimate of the total -rror to be 0.92 mgal (total standard error) in gravity
anomaly and about 0.7 mgal error in normal gravity.

In Table 12 we give the summary of errors that affect the actual results of
upward continued gravity anomalies and normal gravity for the Balloon Project.
Notice that the indire,:t method is to some extent free of the truncation error
(Section 4) since we carry up the complete global long-wavelength information
represented by the spherical harmonic expansion of the gravity field up to
degree 180.

In order to get a feeling of the actual magnitude of propagated errors it is
possible to perform s me simplified numerical test. (Rapp, 1966) suggested a
simple numerical checc (not estimate) on the relative magnitude of propagated
uncorrelated errors n the upward continuation process. The trick is to
upward continue the ,ostimates of accuracies of gravity material using the same
computer program which was used to process the actual gravity data.

In a computer implementation the upward continuation integral (6.1.1) takes
the form of summation:

Ag 2' g dxd' (10.6.1)

This is a weighted average operator. Now, if we know the accuracy m2ag of
each component agij used in the summktion (10.6.1) we can neglect the

9

97.. .

S . -. '



)rrelations between adjoining blocks (i, j) and simply sum the individual error

ariances m 2 ag over all blocks used according to the formula:

2 H 2 2 .

(2T 2 IZI mAg (Dxd3 (10.6.2)

'able 12. Error Budget of the Gravity Upward continuation for the Balloon
Project

Effect at 30 km Altitude

Source Gravity Anomaly Normal Gravity

The original gravity material 0.9 mgal standard unaffected
error and the error in predicted error
5'x5' mean anomalies (interpola- 55 km correlation
tion error) (see Section 6) length
assumed: standard error 5 mgals

correlation length 10 km

Errors in the modelling of the 0.2 mgal uncer- unaffected
upward continuation distance tainty
(on the transition from the true
earth to the Poisson's spherical
geometry). (See Table 9, col. 3).
assumed uncertainty: 1.5 km

Representation error 0.2 mgal standard unaffected
(See Section 6) error

Errors in the balloon position
(See Section 10.5)

horizontal errors of 2 m 0.0012 mgal 0.0011 mgal
maximal error uncertainty

vertical errors of 2 m 0.0006 mgal 0.6 mgal un-
uncertainty certainty

Height anomaly error
(See Section 10.5)

Estimated uncertainty of 1 m 0.003 mgal 0.3 mgal
uncertainty uncertainty
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is the quadrature formula similar to (10.6.1) but with the squared kernel.
efore, we used the actual upward continuation program described in (Rapp
) to upward continue the uncorrelated errors in the gravity material due
Lhe prediction of nean values on the 5'x5' grid, using (10.6.2). For S
Cramming details see (Rapp, 1966). Computation was performed exactly at
balloon locations giving the accuracies on the order of 0.2 mgal for the

,it portion of the balloon trajectory (30 km upward continuation distance).
n this single experiment we observe the attenuation of errors from about 4
Is (on average) at the ground level to about 0.2 mgals at 30 km flight
,ude.

It is important to realize that this numerical experiment is valid only for
specific type of error (namely errors due to prediction of the mean gravity

maly values on the grid, see Secticn 8.3 for details) assuming the error is
orrelated. Also the arbitrary scaling of error variances on the ground
ild produce the respectire rescaling of upward continued variances of flight
ration. In that sense only the relative degree of attenuation is a meaningful
come of that numcrical check.

0
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Summary and Conclusion

We have presented operational procedures for the upward continuation of
'ity anomalies given on the surface of the earth. The main conceptual
culty is that operationally available anomalies are referred to the earth's
ace, which is not an equipotential surface. These surface anomalies can be
ard continued using discrete estimation procedures such as collocation or a
hammar-type of approach, but in this report we have avoided such
niques because of the expensive matrix inversions that they require.

Instead, as stated in Section 1 we used collocation orly in a preliminary
P, to predict an optimal set of mean anomaly values from the available
gularly distributed point anomaly data. This application of collocation is
rationally feasible because in contrast to the prediction of upward
inued values, the prediction of mean anomalies requirE:s information to be
-rted only from a small number of data points around the computation block.
,r obtaining a complete set of mean anomalies over rectangular blocks we
. to a continuous upward continuation problem, in which it is assumed that
!very point on the earth's surface we know the gravity anomaly function, as

resented by the mean values.

The upward continuation of a continuous gravity anomaly function given
the (non-level) surface of the earth is by no means a simple problem. The
plest conceptualization of a solution is by means of Taylor series expansion,
which the surface anomalies are first used to derive anomalies on a level
face using the vertical gradients of the anomaly field. Once the level
-face anomalies are known classical Poisson integration yields a solution to

upward continuation problem with relative accuracy on the order of the
th's flattening. However, for rough anomaly fields the computation of
•tical gradients required for data reduction to a level surface, itself requires
:h density and accuracy of data that is not usually available in practice (see

(1980), for example). Moreover, for such fields downward continuation of
-face values cannot be expected to be regular. Therefcre, as reasoned out
Section 3 we have resorted to the so-called indirect method of upward
itinuation.

The most important feature of the indirect method is the extraction and .

)arate modeling of the high frequency irregularities of the original gravity
)maly signal. This high frequency component is due to shal ow topographic
Eses, and can be modeled by directly integrating the gravita.iional effects of
,se masses without need for any sort of data reduction to a level surface.
Erationally, the topographic effects on gravity anomalies at altitude can be
aputed by prism integration as stated in Section 2.5 with an operational
)gram mentioned in Section 7, while on the earth's surface the topographic
ect on gravity anomaly at a point is conveniently forrmed as the sum of a
)uguer plate" effect and a "terrain correction" effect (see (3.3.11)). In this
)ort we modeled the high frequency component of the '-dimensional gravity
)maly field using as "equivalent sources" the po:;itive and negative
)ographic masses of assumed density 2.67g/cm 3 , lying between the actual
)ography and a reference topography to spherical harmonic degree and
ter 180. With the extraction and separate modeling of the high frequency
)maly signal we circumvent the major difficulties associated with the
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reduction of surface data to a level surface, these difficulties being precis ly
due to the high frequency irregularities of the field.

The residual field left after removal of topographic effects is much
smoother than the original field. From this residual field we decided to
further remove and separately model the low frequency component using the
Rapp-180 (1981) field. This was done in order to formally free the upward
continuation from truncation error caused by neglect of remote zone data. In
order to remove the effect of the Rapp-180 field from the surface data, the
data points were basically taken at their actual horizontal positions, but an 6
assumption had to be made that the data points all lie on a common level
surface and not in their actual vertical positions. The assumption was
necessary to keep evaluation time for the Rapp-180 field reasonable. The
assumption seems justified because the vertical gradient of a 180-field is
expected to be small, but this point can be further studied (see, for example
Table 9). The Rapp-180 field was evaluated at ground level using a program g
for fast generation on a grid, while at isolated computation points at altitude
another program suited for single point computations was used (see Section 7).

The medium frequency residual field, left after removing both the high
frequency topographic effects and the low frequency spherical harmonic field,
was then modeled by the Poisson integral. Since the data points were still
located on the earth's surface, a data reduction to a level surface was still .
called for. However, since the residual field is much smoother than the
original field, an approximate reduction can be used. To do this a
long-wavelength form of the terrain correction, namely, the terrain correction
tcs of an expansion of the topography to cegree 180, was implicitly applied to
the residual anomalies. The application of long-wavelength terrain correction
to approximate a first order long-wavelength reduction of surface anomaly data
to a level surface is discussed in Moritz (1966). Since the final position of the
level surface to which the data are reduced is uncertain in this procedure, it
was simply assumed that this position coincides with the mean elevation of
topography in the area of upward continuation. Such uncertainties in defining
the data level directly causes uncertainties in defining the upward continuation
distance HO which is the vertical clearance between the data level and the
upward continuation point in space. The numerical effect of such uncertainties
on upward continuation results can be examined from Table 9.

The final upward continued gravity anomaly model of the indirect method
was then the sum total of three contributions: low frequency contribution from
spherical harmonics, high frequency contribution from topographic mases, and
medium frequency contribution from Poisson integration of terrain-corrected
residual field. The relative order of magnitude of the three contributions
depends on the spectral distribution of power of a particular field,and for the
profiles tested in Section 9 the contributions were about the same in
magnitude.

As a matter of interest, we compared the results of the indirect method to
those of two simpler upward continuation procedures. The first was the direct
Poisson integration of the original terrain-uncorrected surface anomalies,
simply assuming the anomalies to lie on a common level surface. The second
was the direct Poisson integration of terrain-corrected surface anomalies, with
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the terrain-corrections inten'-d to effect an approximate data reduction to a
level surface. The terrain corrections in the second method originated from
the point terrain corrections given in the original data records, these
corirections having been applied to the original point anomalies before the
prediction of the mean anomalies used in Poisson integration.

For the numerical tests we developed 5'x5' mean anomalies and 5'x5' mean
elevations in a 7"x9° test area in New Mexico, starting from available
irregularly distributed point anomaly data and 30"x30" grid point elevations.
The 30"x30" elevations themselves were also used in the final computations, for
detailed integration of topographic effects in the immediate vicinity of the
computation point. The various operational steps in developing mean anomalies
including data thinning, tailoring of covariance function, use of only the ten
closest data points in the collocation prediction, and data de-trending at high
and low frequencies are discussed in detail in Section 8. The required
resolution and area coverage of tiean unomalis tor giv n ripward continuation
distances, as well as the effect of data error propagation, can be assessed
based on concepts presented in Sections 4, 5 and 6.

Numerical investigations on upward continuations to teit-profiles at 30, 10,
and 5 km are presented in Section 9. The test profiles resulting from the
direct Poisson integration of terrain-uncorrected anomelies are negatively
biased (i.e., too low) by about (0.6, 0.5, 0.7) mgal at elevation (30, 10, 5) km
compared with the profiles resulting from the direct Poisson integration of
terrain-corrected anomalies. This bias between the iwo direct methods
represents the effect of upward continued terrain corrEctions (see (9.2.3)).
There is no detectable bias between the terrain-correctec direct method and
the indirect method; this is mainly due to the fact that in the Poisson
integration part, the two methods both use terrain-corrected anomalies (see
(9.2.6) and (9.2.7)). The standard deviation of the differences among all three
upward continuation methods reach the order of (0.5, 0.6, 1.3) mgal at (30, 10,
5) km elevation (see Tables 3, 4, and 5).

In Section 10 we present the details of applying the upward continuation
methods to compute anomalies (and total gravity) at points of the balloon-borne
gravity measuring project of AFGL. It is hoped that such projects would
provide "aerial truth" assessment of the accuracies of upward continuation
models. It is projected in Section 10.6 that values at the balloon points have
been recovered with about 0.9 mgal standard error in gravity anomaly with
data error propagation as dominating error source, and about 0.7 mgal error in
normal gravity with vertical position error as dominating error source.

In another series of tests (Section 9.3) we have shown agreement between
Fast Fourier upward continuation and Poisson integration, on the level of (0.1,
0.3) mgal at (30, 10) km elevation. Fast Fourier techniques are useful for very
fast generation of complete grids of upward continued values.

We conclude that actual gravity measurements at altituJe should be used to
validate the various procedures presented in this report. Practical validation
will be most important. First, to ascertain the accu-acy of the upward
continued gravity values, and second, to ascertain the improvements gained by
employing the following intended refinements: the use of terrain correction to
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approximate data reduction to a level surface, and the modeling of high
frequency anomaly components as topographic mass effects. Preferably, actual
measurements should be accurate in the milligal level, to validate the small bias
and differences observed in our numerical comparisons. .
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Appendix A

DIGITAL FOURIER TRANSFORM FOR UPWARD CONTINUAT]CN

IIJOB,
REGION=512K*MSGLEVEL=(29O)

/*JOBPARM V=S
//PROCLI8 DD DISP=SHRtDSN=GEODSCI.PROCLIB

EXEC VSSUPER
//SOURCE DO
C
C
C
C UPWARD CONTINUATION CF DG BY FOURIER TRANSFORM

IMPLICIT REAL*8 (A-HO-Z)
COMPLEX*16 Z(1289128)vCTEI4P(128)
DIMENSION TEMP(108)
DIMENSION 01(29128,128)
EQUIVALENCE (D1(1,1,1) ,ZlI1)J
COMMON CTEMP

C
C INITIATE CONSTANTS (LINEAR MEASURE IN KM ANGULAR INITIALLY IN DEC DEG)

F=28 .500
R=637100t1.500
AMELEV=1.*500
PI=400*OATAN( lD0i
ANGRI 0=500/6000
F IAVER=32. 500

C
jC LINEAR INCREMENTS IN E-W AND N-S DIRECTIONS

DX=R*DCCS (FIAVER*Pl/18000 )*ANGR ID*P1/ 18000
DY=R*ANGRID*PI /18000

C
C INPUT THE CATA

NXS 128
b NY= 128

INDX=108
lNDY=84

C
0O 2 I=1,NY
00 2 J1,#NX

2 ZlIIJl=l0D0t0D0)
OC 5 1,1INDY
PEAD(1,7001I(TEMP(J),J=LvIN0X)
DO 5 J=19INDX
Z(I IJ)=TEMP(J)

5 CONTINLE
T001 FORMATll 1X.1OF 7.2/I 3X.11F7.21)
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C ---------- ---------- ----------------- - -

C FORWARD 2-C TRANSFCRM (+SIGN)
CALL FFT2DILNYtNXt41)

C
C
C FREQUENCY INCREMENTS

DFX=1D0/ (NX*DXJ
DFY=100/(NY*DY)

C UPWARD CONTINUA~TION 20 TRANSFORM (-SIGN)
CALL FFT2UP(H#OFYtDFX,Z ,NYNX ,-1)

C ------------------------------------------

C
C OUTPUT

DO 11 1=1,INDY
DO 10 J=1,INDX

10 TEMP(J)=Zlj)
11 IF(I.EQ.421 WRITE(6,7OO2J(JTEMPIJJJ-1,INDXJ

7002 FORMAT.(1X,13,F7.21
C

STOP
END
SUBROUTINE FFT20 lHNXNY,NSIGN)

C SUBROUTINE: FFT2D COMPUTES THE TWO DIMENSIONAL FOURIER TRANSFORM *
C CF A CCMPI.EX ARRAY HINX,NY)tNX AND NY MUST BE A POWER OF 2.
C
C NSIGN= +1 INVERSE TRANSFCRM
C
C NSIGN= -1 FCRWARD 1RANSFCRM
C0

IMPLICIT REAL*8 (A-H,O-ZJ
COMMON CTEMP
COMPLEX*16 H(NX,NY)pCTEMP[128)
SIGNI=DFLOAT( NSIGN)
DO 10 IY=19NY a

10 CALL FCRKINX,H(1,IY)tSIGNI)
IF(NY.EQ.1J RETURN 

-

DO 20 IX=I,NX
DO 30 1Y=1,NY

30 CTEMPtIYJ=H(IXv1Yl
CALL FCRKINY,CTEMPqSIGNI)
00 40 IY=19NY

40 H(IX, IV)=CTEMPI~Y)
20 CONTINUE

RETURN
END
SUBROUTINE FORKILX9CXvSIGNI)A

C FAST FCURIER TRANSFORM, MOCIFIED FROM CLAERBOUT,J.F.
C FUNDAMENTALS OF GEOPHYSICAL DATA PROCESING, MCCRAW-HILL,I976.
C LX
C CX(K)=SUM(CX(J)*EXP(2*PI*SIGNI*I*(J-1 3*(K-1)/LIx) --

C Jsj
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C FOR K=192# ... t(LX-Z**INTEGER)
C SIGNI= +1 INVERSE TRANSFCRM
C SIGNI= -1. FCRWARD TRANSFCRM
C LX MUST BE A POWER OF 2 tLXx2**[NTEGER)
C NORMALIZATION PERFORMED BY DIVIDING BY
C DATA LENGTH UPON THE FORIAARD TRANSFORM

IMPLICIT REAL*8 fA-H,O-Z)
COMPLEX*16 CX(LX),CARGCEXPCWtCTE4P
PI=40O*OATANI 100)
J= I
SC=10O/DFLOAT( LX)
DO 30 I=l,IX
IF(I.GE.J) GOTO 10
CTEMP-CX( J)
CXCJJ=CX( I)
CXILI)=CTEMP

10 M=LX/2
20 IFIJ.LE.MJ GOTO 30

J=J-M
M=M/Z
IF4M.GE.1) GOTO 20

30 J=J+M
1=1

40 ISTEP=2*L
0O 50 !P=LL
CARG=(OD0,lDO)*(PI*SIGNI*0FLOAT(M-1l/DFLJATCLI
CW-zCDEXP(CAPG)
00 50 I=M,LX,ISTEP
CTEMP=CW*CX 11.1)
CX( I+L)=CX(lI)-CTEMP

50 CXLI)=CXtI)+CTEMP
L=ISTEP
IF(L.LT.LX) COTO 40
IFiSIGNI.GT.C1DO) RETURN
00 60 IItLX

60 CX(I)=CXII)*SC
RETURN
END
SUBROUTINE FfT2UP (ELEVCFX#DFYHNXNY,NS IGN)

C SUBROUTINE FFT20 COMPUTES THE TWO DIMENS[CNAL FOURIER TRANSFORM
C CF A CCMPLEX ARRAY H(NXtNY),NX AND NY MUST BE A POWER OF 2.
C ELEV [S THE APWARD CONTINUATION DISTANCE ISAME UNITS AS DX DY)
C DFX OFY FREQUENCY INCREMENTS ASSOCIATED WITH INDEXES NX NY RESP
C DFX=L/INX*DX) OFY=I/NY*DY)
C
C NSIGN- +1 INVERSE TRANSFCRM
C
C NSIGN= -1 FORWARD TRANSFCRM
C
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IMPLICIT REAL*8 (A-HC-Z)
COMMON CTEMP
COMPLEX*16 H(NXtNY),CTEMP(128)
P1=400*DATAN( 100)0
SIGNI=DFLCAT(NSIGN)

C
00 16 IX=1,NX
IFI IX- 1.GT.NX/2)THEN
IPX=( IX-1 )-NX
ELSE
'PX=Ix-1
ENDIF
00 15 ZY=I#NY
[El IV-l.GT.NY/2) THEN
IPY=IIY-1)--NY
ELSE
IPY=IY-1
ENOIF
OUMP=DEXP C-ELEV*2D0*PI*DSQRT IDFLOAT (IPX )**2*DFX**2 .OFLOAT( IPY)
S**2*DFY**2))

15 H(IX9IY)=OUMP*H(IX9IY)
16 CCNTINUE

c
DC 10 IY=1,NY

10 CALL FCRK(NXtH(191Y)vSIGNI)
IF(NY.EQ.l) RETURN

C
DO 20 IX=1,NX
DO 30 IY=1,NY

30 CTEMP(IY)=t-i(IX,IY)
CALL FCRK(NYvCTEt4PoSIGNZ)
00 40 1Y=1,NY

40 HIIXXY)=CTEMP(IY3
20 CONTINUE

RETURN
END

//GO.FT0lF001 DD DISP-SHR,DSN=TS4268.FA5X58.NEWMEX

107



References

Bhattacharyya, B.K., "Some General Properties of Potential Fields in Space and
Frequency Domain: A Review," Geoexploration, vol. 5, pp. 127-143, 1967.

Bjerhammar, A., "A New Theory of Geodetic Gravity," Tran&. Roy. Inst. Technol.
Stockholm, No. 243, 1964.

Claerbout, J.F., Fundamentals of Geophysical Data Processing with Applications
to Petroleum Prospecting, McGraw Hill, Inc., New York, 1976.

Colombo, 0., "Convergence of the External Expansion of the Gravity Field Inside
the Bounding Sphere," Manuscripts Geodaetica, Vol. 7, No. 3, pp. 209-246,
October 1982.

Cruz, J.Y., Ph.D. thesis (in preparation), Dept. of Geodetic Science and
Surveying, The Ohio State University, 1985.

Forsberg, R., "A Study of Terrain Reductions, Density Anomalies, and Geo-
physical Inversion Methods in Gravity Field Modeling," Report No. 355,
Dept. of Geodetic Science and Surveying, The Ohio State University, April
1984.

Forsberg, R. and C.C. Tscherning, "The Use of Height Data in Gravity Field
Approximation by Collocation," J. Geophys. Res., Vol. 86, No B9, pp.
7843-7854, September 1981.

Forsythe, G.E., M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical
Computations, series in Automatic Computation, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1977.

Heiskanen, W.A. and H. Moritz, Physical Geodesy, W.H. Freeman and Co., San
Francisco, 1967.

Heller, W.G. and S.K. Jordan, "Attenuated White Noise Statistical Gravity Model",
J. Geophys. Res., Vol. 84, No. B9, pp. 4680-4688, August 1979.

Hirvonen, R.A., "A New Theory of the Gravimetric Geodesy", Publications of the
Institute of Geodesy, Photogrammetry and Cartography, No. 9, The Ohio
State University, 1960.

Hirvonen, R.A. and H. Moritz, "Practial Computation of Gravity at High Alti-
tudes", Report No. 27, Insitute of Geodesy, Photogr.-immetry and Carto-
graphy, The Ohio State University, May 1963.

Hittelman, A.M., D. Scheibe, and C. Goad, "U.S. Land Gravity," Key to
Geophysical Records Documentation No. 18, National Geophysical Data Center,
NOAA, Boulder, Colorado, 1982.

Jekeli, C., "Reducing the Error of Geoid Undulation Computations by Modifying
Stokes' Function," Report No. 301, Dept. of Geodetic Science and Surveying,
The Ohio State University, May 1980.

108

S... ." .. °



Jekeli, C., "Optimizing Kernels of Truncated Integral Formulas in Physical
Geodesy," presented at IAG, General Meeting, Tokyo, Japan, May 7-15, 1982.

Jordan, S.K., "Fourier Physical Geodesy," The Analytic Sciences Corporation,
Report No. 1, AFGL-TR-78-0056, for Air Force Geophysics Laboratory, 1978.

Lazarewicz, et al., "Balloon-borne, High-Altitude Gravimetry," EOS Abstracts for
AGU Spring Meeting, Vol. 64, No. 18, May 3, 1983.

Morelli, C., et al., "The International Gravity Standardization Net 1971
(IGSN-71)," Special Publication No. 4, International Association of Geodesy,
May 1972.

Moritz, H., "Studies on the Accuracy of the Computation of Gravity in High
Elevations," Report No. 21, Institute of Geodesy, Photogrammetry and
Cartography, The Ohio State University, April 1962.

Moritz, H., "Linear Solutions of the Geodetic Boundary-Value Problem," Report
No. 79, Dept. of Geodetic Science, The Ohio State University, December
1966.

Moritz, H., "On the Use of the Terrain Correction in Solving Molodensky's
Problem," Report No. 108, Dept. of Geodetic Science, The Ohio State
University, May 1968.

Moritz, H., "Nonlinear Solutions of the Geodetic Boundary-Value Problem," .-

Report No. 126, Dept. of Geodetic Science, The Ohio State University,
October 1969.

Moritz, H., "Molodensky's Series and Analytical Continuation," Report No. 145,
Dept. of Geodetic Science, The Ohio State University, September 1970.

Moritz, H., "Convergence of Molodensky's Series," Report No. 183, Dept. of
Geodetic Science, The Ohio State University, September 1972.

Moritz, H., Advanced Physical Geodesy, Herbert Wichmann Verlag, Karlsruhe,
1980.

Noe, H., "Numerical Invesigations on the Problem of Molodensky," der geo-
datischen Institute der Technischen Universitat Graz Folge 36, 1980.

Rapp, R.H., "A FORTRAN Program for the Upward Coninuation of Gravity
Anomalies," Report No. 62, Dept. of Geodetic Science, The Ohio State
University, Februt.ry 1966.

Rapp, R.H., "A FORTRAN Program for the Computation of the Normal Gravity and
Gravitational Field of the Earth," Report No. 52, Dept. of Geodetic Science,
The Ohio State University, January 1966.

Rapp, R.H., "Results of the Application of Least-Squares Collocation to Selected -

Geodetic Problems," in H. Moritz and H. Sunkel (eds): Approximation
Methods in Geodesy, H. Wichmann, Karlsruhe, pp. 117-156, 1978.

109

.*.*'...*. .:* 7- . . . . . . . . . . . . . . ..



Rapp, R.H., "Geometric Geodesy," vol. 1 (class notes), Department of Geodetic
Science and Surveying, The Ohio State University, 1980.

Rapp, R.H., "The Earth's Gravity Field to Degree and Order 180 Using Seasat
Altimeter Data, Terrestrial Data, and other Data," Report No. 322, Dept. of
Geodetic Science and Surveying, The Ohio State University, December
1981..

Rapp, R.H., "A FORTRAN Program for the Computation of Gravimetric Quantities
from High Degree Spherical Harmonic Expansions," Report No. 334, Dept. of
Geodetic Science and Surveying, The Ohio State University, September,
1982.

Rizos, C., "An Efficient Computer Technique for the Evaluation of Geopotential
from Spherical Harmonic Models," Aust. J. Geodesy, Photogrammetry and
Surveying, No. 31, pp. 161-169, December 1979.

Robinson, E.A., M.T. Silvia, Digital Foundations of Time Series Analysis, vol. 2,
Wave-Equation Space-Time Processing, Holden Day,'Inc., San Francisco,
1981.

Rummel, R., "Downward Continuation of Gravity Information From Satellite
Tracking or Satellite Gradiometry in Local Areas," Report No. 221, Dept. of
Geodetic Science, The Ohio State University, April 1975.

Rummel, R., "Gravity Parameter Estimation from Large Data Sets Using
Stabilized Integral Formulas and a Numerical Iritegration Based on Discrete
Point Data," Report No. 339, Dept. of Geodetic Science and Surveying, The
Ohio State University, September 1982.

Schwarz, K.-P. and G. Lachapelle, "Local Characteristics of the Gravity Anomaly
Covariance function," Bulletin Geodesique, vol. 54, pp. 21-35, 1980.

Shepperd, S.W., "Molodenskii-type Coefficients with Application to Gravity
Disturbance Vector Truncation Errors at Altitude," Report No. R-139, The
Charles Stark Draper Laboratory, Inc., Cambridge, MA, October 1979.

Sideris, M.G., "Computation of Terrain Corrections Using the Fast Fourier
Transform," IAG SSG 4.91 handout, January 1984.

Sunkel, H., "Feasibility Studies for the Prediction of the Gravity Disturbance
Vector in High Altitudes," Report No. 311, Dept. of Geodetic Science and
Surveying, The Ohio State University, March 1981.

Sunkel, H., "The Estimation of Free-Air Anomalies," Report No. 315, Dept. of
Geodetic Science and Surveying, The Ohio State U-iversity, September
1981.

Sunkel, H., "Point Mass Models and the Anomalous Gravitational Field of the
Earth," Report No. 328, Dept. of Geodetic Science and Surveying, The Ohio
State University, December 1981.

I
110"-""

. . -. .



Sunkel, H., "The Geoid in Austria," in Proceedings of the International
Association of Geodesy (IAG), Symposia, Hamburg, FRG, pp. 348-364, August
1983.

Sunkel, H., and G. Kraiger, "The Prediction of Free-Air Anomalies," Manuscripta S
Geodaetica, Vol. 8, No. 3, pp. 229-248, December 1983.

Tscherning, C.C. and R. Forsberg, "Prediction Test Using Least Squares
Collocation and Residual Terrain Reduction," in K.-P. Schwarz (ed.): -
Techniques to Predict Gravity Anomalies and Deflections of the Vertical in
Mountainous Areas, Report No. 30004, Dept. of Surveying Engineering,
University of Calgary, Alberta, 1983.

Tacherning, C.C., "Gravity Prediction Using Collocation and Taking Known Mass
Density Anomalies into Account," Geophys. J.R. astr. Soc., 59, 147-153, 1979.

p

.............



FILMED

7-85

DTIC

DmolC


